MOUNT LINION A N G U S 2024

Tuesday 4th June, Commences 1pm

Ohai, RD1 Otautau, Southland, NZ

MOUNT LINTON A N G U S 2024

- SALE BY AUCTION - **Rising 2 Year Old** Bull Catalogue

Tuesday 4th June, Commences 1pm HYBRID & BIDR Platform

Welcome

Welcome to the Rising Two-Year-Old Bull catalogue for the Mount Linton 2022-born bulls which will be available at our 2nd Annual Auction to be held on the 4th of June at 1 pm.

The bulls were wintered in two mobs of 165. Of the 330 yearling bulls bred, 109 of these were used across Mount Linton's Stud and Commercial herd. No other herd in New Zealand puts this much pressure on their bulls.

Our Stud herd adheres to a strict policy of not compromising on structure, temperament, feet or udder formation. Our focus is to produce a genetic package that is unique to the industry.

The focus of our breeding programme is docile, moderate maternal cows, with a mature-cow profile and fat cover that guarantees calving ease, fertility, and an elite carcass package. Most of the bulls catalogued are in the top 15% of the breed for the AngusPro index for birthweight, rib fat and IMF with plenty in the top 5%. Most of the bulls offered achieve the A+ endorsement from AngusPure. They add value to any beef programme.

These bulls have been semen mobility tested, morphology tested, palpated and vet-checked as a yearling and vet-checked again at 18-months of age.

We look forward to seeing you at the sale.

Mat Middlemass

PGG Wrightson - Terms And Conditions

- The New Zealand Stock & Station Agent's Association Conditions of Sale and, to the extent deemed relevant by PGG Wrightson Limited (PGW), PGW's Terms of Sale apply to this sale. When proceeds are credited or a purchase us debited to a PGW monthly credit account, then PGW's Monthly Account Terms of Trade (as amended from time to time) apply to the extent deemed relevant by PGW. These terms can be inspected at the registration desk and on the wall in the auction room. The current versions of PGWS's Terms of Sale and Monthly Account Terms of Trade are also available online at: www.pggwrightson.co.nz\Our-Company\Terms-and-Conditions or in hardcopy on request.
- All lots are sold exclusive of GST.
- 6% purchasing commission will be paid to recognised agents and firms introducing buyers prior to sale with the auction.
- Each lot becomes the property of the purchaser at the fall of the hammer.
- The auctioneers can arrange insurance on any stock at request of the buyer.
- Bulls will be returned to their grazing blocks after the sale and must be removed from within 14 days of sale unless
 prior arrangements are made. Bulls are grazed at own risk.
- Please leave full and explicit instructions in regards to transport.
- No warranty will be given by the auctioneer with any lot, and as all lots are open to inspection prior to commencement
 of the sale, the same will be sold with all faults if any. No compensation shall be made and respect of any faults of
 error or description of any lots, however the vendor reserves the right to make compensation to a buy if it is the
 vendors wish.
- The vendor reserves the right to alter the order of the sale at any time.
- Although every care has been taken to ensure the accuracy in compiling this catalogue no responsibility is taken for any errors that may be included therein.
- The vendor wishes to retain the right to collect semen off any bull catalogued in this sale at any stage for in herd use only.
- When bidding online the bidr auction terms conditions can be found at: https://bidr.co.nz/content/user-termscondtions

Breeding Better Business

As part of New Zealand's largest Livestock network, our team of Genetics Specialists have the best advice, more contacts and greater reach.

If you're looking for a planned approach to success, give us a call today.

CALLUM MCDONALD Genetics Lower South Island 027 433 6443

ANDREW MARTIN Regional Livestock Manager 027 441 6431

www.pggwrightson.co.nz/livestock

WILLE SWALE Livestock Representative 027 441 6433

JOHN MCKONE Auctioneer 027 229 9375

fb.com/pgwlivestock

BEN MCKERCHAR Livestock Representative 027 366 7766

instagram.com/pgwlivestock

BULL INSURANCE? Yes, we can help. Scan to find out more.

1

Buying a Mount Linton Bull

GUARANTEE

The entry of any Mount Linton Bull in this catalogue constitutes a 3 year guarantee from date of purchase for fertility and structural soundness that affects the bull's ability to breed. The purchase will be refunded by way of credit at subsequent sales (without interest, expenses, costs, or damages). The value of the bull shall decrease by 1/3 each year and also take into account possible killing revenue.

The purchaser shall throughout the guarantee period assure the bull has proper care and attention and is maintained in good condition and health including annual BVD vaccination and any mineral supplements that may be needed. The purchaser shall provide a vet certificate if required to prove infertility or structural unsoundness. Incapacity due to injury, neglect or illness suffered or contracted after the sale is not covered by the guarantee. Any disputes shall be settled by an arbitrator appointed by the auctioneering company.

TRANSPORT

The transport of bulls is compliments of Mount Linton as far north as Fielding.

HERD STATUS AND HEALTH

All bulls have:

- TB status C10.
- Negative BVD and EBL test.
- BVD vaccinated.
- Positive semen morphology test.

- Cleared thorough veterinarian check physical health.
- Forward store condition ready to acclimatise to their new environment.

Choosing your bull/s

1. Study individual bulls.

Please note: Shading = values in the top 40% of the Trans Tasman Angus Cattle Evaluation for 2022 born animals are shaded a light green and the top 25% a gold, EXCEPT for mature cow weight where any bull with a mature weight less than its 600-D is shaded.

Lot 1										LINTON	190 5	55 ^{sv}					NZ	E203	05019055
Date of E	Birth: 07	/09/2	2019			Registe	er: APR			М	ating Typ	oe: Al							AMF,CAFU,DDF,NHF
	SIRE:	NOR	G42			1 ^{pv} G420 ^s	V					DAM	1: NZE20	N 13007) 30511 N 13356	5125 LII	NTON 1	9055 ^{sv}		
TACE	Mid Se	otemb	oer 2	021 Tra	ansTasm	an Angus	Cattle E	valuatio	n										Selection Index
\sim	CEDir	CEDt	rs	GL	BW	200	400	600	MCW	/ Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO
EBVs	+11.0					+74	+98	+66		+2.1	-6,8	+61	+4.1	+2.2	+2.3	-1,6	+3.5	\$161 A+	
Acc	59% 52% 84% 73% 70% 70%					71%	69%		66%	43%	65%	64%	68%	65%	65%	63%			
Perc		9		8	2	93 \	87	82	94	6	41 Traits O	<u>15</u> bserved	65 I: GL,BWT	<u>,200</u> W1	,400WT,	<u>4</u> 600WT,	98 Scan(EM/	A,Rib,Ru	Imp,IMF),Genomics
	Calving Ease Direct			statio ength		é	00, 40 600 D Weigh	ау		Cir	Scrotal cumfere		Carcas Weigh	-	Rib Fa	-	Retail Beef Yie		AngusPro Index
									Matu Cow Weig	I		Days † Calvir		Eye Muscle Area		Rump F		Intra Muscul Fat	
															_				

- Compare individual's genetic information to the breed average on page 18 - 19.
- **3.** Why buy a HD50K tested bull? Page 20.

- **4.** Anguspure partner, Page 9.
- 5. Explanations for EBV's and Indexes on page 10 11.
- 6. Consider the sire's genetic information on pages 12 15.

ANGUSPRO INDEX DEVELOPED SPECIFICALLY FOR THE NEW ZEALAND FARMING SYSTEM AND MARKETS

Selection indexes have been published within the TransTasman Angus Cattle Evaluation for several decades and have made an important contribution to the genetic improvements that have been achieved within the Angus breed during this time.

Selection indexes aid in the selection of animals for use within a breeding program where there are several traits of economic or functional importance by providing an overall "score" of an animal's genetic value.

Selection indexes are calculated for a specific breeding purpose and are calculated based on weightings placed on individual traits that are deemed to be important for that purpose.

The selection indexes assist in making "balanced" selection decisions, taking into account the relevant attributes of each animal to identify animals with genetics that are most aligned with the breeding objective for the given selection scenario.

The selection indexes published within TransTasman Angus Cattle Evaluation are economic selection indexes and are derived using BreedObject software, as developed by the Animal Genetics & Breeding Unit (AGBU) in Armidale, NSW.

Ten indexes are currently published as part of the TransTasman Angus Cattle Evaluation. Of these, the Angus Breeding and Angus Breeding Low Feed Cost selection indexes are general purpose selection indexes that are suitable for use in the majority of commercial beef operations, while the AngusPRO selection index is specific to New Zealand production systems and beef markets.

AngusPRO Index (\$PRO)

Selection Index Summary

- New Zealand production system
- · Self replacing herd
- · Daughters are retained for breeding
- Steer progeny are finished on pasture for the AngusPure programme
- Steer progeny slaughtered at a carcase weight of 290 kg at 20 months of age
- · Significant premium for steers that exhibit superior marbling

The AngusPRO index (\$PRO) estimates the genetic differences between animals in net profitability per cow joined in a commercial self-replacing herd based in New Zealand that targets the production of grass finished steers for the AngusPure programme.

Daughters are retained for breeding and therefore female traits are of importance.

Steers are assumed marketed at approximately 530kg live weight (290kg carcase weight with 10mm P8 fat depth) at 20 months of age, with a significant premium for steers that exhibit superior marbling.

Traits Contributions

Figure 1 shows the traits that are considered in the \$PRO index, and how much they contribute to the overall balance of the selection index. The larger the segment, the greater the impact on the Selection Index.

Selection Advantage

Figure 2 shows the selection advantage if animals are selected using the \$PRO index.

The selection advantage is calculated by ranking well-used sires within the Angus breed on the \$PRO index, and comparing the average EBVs of the sires in the highest 10% with the average EBVs of all sires from which they were selected. For example, the sires ranked in the highest 10% based on the \$PRO index had 9kg higher 400 Day Weight EBVs and 1.2kg lower Birth Weight EBVs than the average EBVs of the sires from which they were selected.

The selection advantage is indicative of the long-term direction and relativity of response that will occur in individual traits if selection is based on the \$PRO index. The actual response that is observed will vary depending on the features of the individual breeding program.

A feature of the \$PRO index is a selection advantage of close to zero for mature cow weight, meaning that selection on this index will maintain mature cow weight, while still increasing growth to 200, 400 and 600 days of age.

We focus on the background, so you can focus on the buying.

Targeted Breeding Quality Check:

All sale bulls **DNA parent verified** and breeding value accuracies enhanced with **Genomics**.

All sale bulls have been **semen tested** and passed for quality, morphology and motility.

All sale bulls **BVD tested and** vaccinated.

All bulls independently **structurally assessed** for soundness.

Bull Fertility Soundness Check:

On the 10th of May 2024, all Mount Linton bulls on offer were subject to a crush side examination to ensure no anatomical abnormalities were present on the reproductive organs.

- The Testicles were inspected and palpated to ensure the presence of two symmetrical turgid testicles with no lumps or deformities.
- Protrusion of the penis was obtained through electro stimulation, of which the Penis and prepuce was inspected for any frenulum's, signs of disease (IBR or papilloma's), damage or deviations.
- A semen sample was collected and evaluated for progressive motility, morphology and density. Any bulls in question were assessed under oil emersion magnification through Eosin /Nigrosin stains.

A pass indicates no abnormalities have been detected which would impact the fertility of the bull prior to the sale.

Reuben Brown, BVSc reuben@targetedbreeding.co.nz 0272538216

Everyone in the industry knows that profitability within a cattle system can be improved by making educated predictions with factual data.

It's scientifically proven.

AngusPRO are a group of New Zealand Angus studs that encompass over 40% of New Zealand's registered Angus cattle. These studs have united and made the shift across the ditch, to join the progressive governing body that is Angus Australia.

Angus Australia pride themselves on their quality of leadership in the delivery of innovative programs that will enhance and promote the value of Angus cattle and beef.

Cleardale Focus Genetics Grampians Kahurangi Kakahu Komako Lake Farm Genetics Mount Linton Ngāputahi Oranga Ranui Rimanui Farms Rissington Rotowai Seven Hills Stokman Storth Oaks Takapoto Te Mania The Sisters Totaranui Twin Oaks Vermont Village Farm Wairere Waitangi Wakare Whangara

Our Story

AngusPRO are a group of New Zealand Angus studs that encompass over 40% of New Zealand's registered Angus cattle. These studs have united and made the shift across the ditch, to join the progressive governing body that is Angus Australia. Angus Australia pride themselves on their quality of leadership in the delivery of innovative programs that will enhance and promote the value of Angus cattle and beef.

Everyone in the industry knows that profitability within a cattle system can be improved by making educated predictions with factual data. It's scientifically proven. While ensuring cattle are of sound structure and are quiet in nature, the additional use of science and genomics can assist in viewing what's under the skin of an animal, providing an insight into what future progeny will look like, grow like, breed like and essentially, eat like.

By shifting to Angus Australia, AngusPRO have opened the gateway to technological and education facilities for the studs involved and their clients that are second to none. In what may seem like an administrative shift, we're all gaining a support network of 30-odd staff, countless educational documents and webinars, training sessions, technological tools, extensive research and continuing breed development. And that's just the tip of the iceberg.

Angus cattle are the backbone of the New Zealand beef industry. In the commercial environment they're expected to survive. Amid winter conditions of driving rain and inches of snow they will forage and not only survive, they will thrive. It's in their DNA.

When stud females are mated as heifers, this replicates the commercial farming model and improves overall fertility within the herd. Increased profitability is therefore bred into those progeny, so to speak. EBVs are the best available tool we have in predicting future progeny and when stud breeders use technologies such as HD50k and Angus GS, the accuracy of EBVs and Indexes is increased.

Angus Australia is focused on supporting the genetic improvement of Angus cattle. Their Angus.Tech suite includes a range of software tools and technologies, such as Angus SELECT, which has been developed to support members in improving the profitability of Angus genetics within the beef supply chain, by assisting with the identification of those genetics that are most aligned with their breeding goals and objectives.

While increased profitability for the client is at the forefront of our AngusPRO members' aspirations, producing the finest grass fed eating experience for the end consumer is absolutely imperative. This is their ultimate focus.

Maintaining high standards of sustainable farming practice to ensure the land is enhanced for generations to come is of course, part of daily life for the AngusPRO team. The environment here in New Zealand must be nurtured, with clear water in the streams and rich soils underfoot. It should go without saying that animal husbandry is paramount. These ideals and quality grass fed Angus beef go hand in hand for the end consumer.

Although we are a newly formed entity, many of the studs represented have stood the test of time. They are the perfect synergy of old school reputability and new school technique.

AngusPRO are committed to bettering Angus cattle within the New Zealand beef industry and ensuring Angus is the tastiest beef on everyone's lips.

ANGUSPURE PARTNER

AngusPure NZ has teamed up with 91 Angus studs who share in our vision - to focus on the end consumer. This stud is proud to be named as one of them, and by using the finest genetics and implementing best management practice they can help you produce more premium quality Angus beef.

Only our AngusPure Partner studs display these devices in their sale catalogues. They indicate bulls endorsed by AngusPure NZ.

AngusPure NZ continues to endorse bulls for sale that are either at or above +\$125 for the AngusPure index (API) and at or above \$115 for the AngusPRO index (PRO). These indexes give commercial farmers confidence that by using these selection tools, bulls are most likely to leave progeny with superior carcase quality. At the same time they achieve desirable outcomes for self replacing herds, as the AngusPure & AngusPRO indexes still reward cattle with strong maternal attributes like calving ease, scrotal and growth, along with carcase weight.

To qualify, bulls will be => +\$125 for AngusPure index OR => +\$115 for AngusPRO index

A+ EXTRA ANGUSPURE ENDORSEMENT FOR MARBLING

In addition to the **'A'**, and to assist bull buyers who wish to select for more marbling AngusPure are rewarding those animals that are either at or above +\$145 for the AngusPure index and at or above \$135 for the AngusPRO index. In addition to this they must have an IMF EBV (for marbling) equal to or greater than +2.2. These bulls will be awarded an **'A+'** endorsement. Marbling is one of the very highest eating quality attributes and is necessary in order to meet some of the highest premium requirements for the export program, AngusPure Special Reserve.

To qualify, bulls will be => +\$145 for AngusPure index OR => +\$135 for AngusPRO index, and in addition all bulls must be => +2.2 for IMF EBV

AngusPure NZ recognises the need to lift the amount of marbling in our New Zealand cow genetics, in order to fill the requirements of consumers going forward. Marbling has two critical components; genetics and feeding. Feeding on a rising plane of nutrition is vital but without the genetics these attributes will not be able to express themselves.

Understanding the TransTasman Angus Cattle Evaluation (TACE)

What is the TransTasman Angus Cattle Evaluation?

The TransTasman Angus Cattle Evaluation is the genetic evaluation program adopted by Angus Australia for Angus and Angus influenced beef cattle. The TransTasman Angus Cattle Evaluation uses Best Linear Unbiased Prediction (BLUP) technology to produce Estimated Breeding Values (EBVs) of recorded cattle for a range of important production traits (e.g. weight, carcase, fertility).

The TransTasman Angus Cattle Evaluation is an international genetic evaluation and includes pedigree, performance and genomic information from the Angus Australia and Angus New Zealand databases, along with selected information from the American and Canadian Angus Associations.

The TransTasman Angus Cattle Evaluation utilises a range of genetic evaluation software, including the internationally recognised BLUPF90 family of programs, and BREEDPLAN® beef genetic evaluation analytical software, as developed by the Animal Genetics and Breeding Unit (AGBU), a joint institute of NSW Agriculture and the University of New England, and Meat and Livestock Australia Limited (MLA).

What is an EBV?

An animal's breeding value can be defined as its genetic merit for each trait. While it is not possible to determine an animal's true breeding value, it is possible to estimate it. These estimates of an animal's true breeding value are called EBVs (Estimated Breeding Values).

EBVs are expressed as the difference between an individual animal's genetics and a historical genetic level (i.e. group of animals) within the TACE genetic evaluation, and are reported in the units in which the measurements are taken.

Using EBVs to Compare the Genetics of Two Animals

TACE EBVs can be used to estimate the expected difference in the genetics of two animals, with the expected difference equating to half the difference in the EBVs of the animals, all other things being equal (e.g. they are joined to the same animal/s).

For example, a bull with a 200 Day Growth EBV of +60 would be expected to produce progeny that are, on average, 10 kg heavier at 200 days of age than a bull with a 200 Day Growth EBV of +40 kg (i.e. 20

kg difference between the sire's EBVs, then halved as the sire only contributes half the genetics).

Or similarly, a bull with an IMF EBV of +3.0 would be expected to produce progeny with on average, 1% more intramuscular fat in a 400 kg carcase than a bull with a IMF EBV of +1.0 (i.e. 2% difference between the sire's EBVs, then halved as the sire only contributes half the genetics).

Using EBVs to Benchmark an Animal's Genetics with the Breed

EBVs can also be used to benchmark an animal's genetics relative to the genetics of other Angus or Angus infused animals recorded with Angus Australia. To benchmark an animal's genetics relative to other Angus animals, an animal's EBV can be compared to the EBV reference tables, which provide:

- the breed average EBV
- the percentile bands table

The current breed average EBV is listed on the bottom of each page in this publication, while the current EBV reference tables are included at the end of these introductory notes.

For easy reference, the percentile band in which an animal's EBV ranks is also published in association with the EBV.

Considering Accuracy

An accuracy value is published with each EBV, and is usually displayed as a percentage value immediately below the EBV.

The accuracy value provides an indication of the reliability of the EBV in estimating the animal's genetics (or true breeding value), and is an indication of the amount of information that has been used in the calculation of the EBV.

EBVs with accuracy values below 50% should be considered as preliminary or of low accuracy, 50-74% as of medium accuracy, 75-90% of medium to high accuracy, and 90% or greater as high accuracy.

Description of TACE EBVs

EBVs are calculated for a range of traits within TACE, covering calving ease, growth, fertility, maternal performance, carcase merit, feed efficiency and structural soundness. A description of each EBV included in this publication is provided on the following page.

UNDERSTANDING ESTIMATED BREEDING VALUES (EBVS)

			Genetic differences in the ability of a sire's calves to be born unassisted from 2 year old	Higher EBVs indicate fewer
lirth	CEDir	%	heifers.	calving difficulties in 2 year old heifers.
Calving Ease/Birth	CEDtrs	%	Genetic differences in the ability of a sire's daughters to calve unassisted at 2 years of age.	Higher EBVs indicate fewer calving difficulties in 2 year old heifers.
Calving	GL	days	Genetic differences between animals in the length of time from the date of conception to the birth of the calf.	Lower EBVs indicate shorter gestation length.
	BW	kg	Genetic differences between animals in calf weight at birth.	Lower EBVs indicate lighter birth weight.
	200 Day	kg	Genetic differences between animals in live weight at 200 days of age due to genetics for growth.	Higher EBVs indicate heavier live weight.
ے	400 Day	kg	Genetic differences between animals in live weight at 400 days of age.	Higher EBVs indicate heavier live weight.
Growth	600 Day	kg	Genetic differences between animals in live weight at 600 days of age.	Higher EBVs indicate heavier live weight.
	мсw	kg	Genetic differences between animals in live weight of cows at 5 years of age.	Higher EBVs indicate heavier mature weight.
	Milk	kg	Genetic differences between animals in live weight at 200 days of age due to the maternal contribution of its dam.	Higher EBVs indicate heavier live weight.
Fertility	DtC	days	Genetic differences between animals in the time from the start of the joining period (i.e. when the female is introduced to a bull) until subsequent calving.	Lower EBVs indicate shorter time to calving.
Fert	SS	cm	Genetic differences between animals in scrotal circumference at 400 days of age.	Higher EBVs indicate larger scrotal circumference.
	сwт	kg	Genetic differences between animals in hot standard carcase weight at 750 days of age.	Higher EBVs indicate heavier carcase weight.
	EMA	cm ²	Genetic differences between animals in eye muscle area at the 12/13th rib site in a 400 kg carcase.	Higher EBVs indicate larger eye muscle area.
Carcase	Rib Fat	mm	Genetic differences between animals in fat depth at the 12/13th rib site in a 400 kg carcase.	Higher EBVs indicate more fat.
Car	P8 Fat	mm	Genetic differences between animals in fat depth at the P8 rump site in a 400 kg carcase.	Higher EBVs indicate more fat.
	RBY	%	Genetic differences between animals in boned out saleable meat from a 400 kg carcase.	Higher EBVs indicate higher yield.
	IMF	%	Genetic differences between animals in intramuscular fat (marbling) at the 12/13th rib site in a 400 kg carcase.	Higher EBVs indicate more intramuscular fat.
Feed/Temp.	NFI-F	kg/day	Genetic differences between animals in feed intake at a standard weight and rate of weight gain when animals are in a feedlot finishing phase.	Lower EBVs indicate more feed efficiency.
Feed/	Doc	%	Genetic differences between animals in temperament.	Higher EBVs indicate better temperament.
ย	Claw Set	score	Genetic differences in claw set structure (shape and evenness of claws).	Lower EBVs indicate a lower score.
Structure	Foot Angle	score	Genetic differences in foot angle (strength of pastern, depth of heel).	Lower EBVs indicate a lower score.
Ń	Leg Angle	score	Genetic differences in rear leg structure when viewed from the side (angle at front of the hock).	Lower EBVs indicate a lower score.
Selection Index	\$A	\$	Genetic differences between animals in net profitability per cow joined in a typical commercial self replacing herd using Angus bulls. This selection index is not specific to a particular market end-point, but identifies animals that will improve overall net profitability in the majority of commercial, self replacing, grass and grain finishing beef production systems.	Higher selection indexes indicate greater profitability.
Sele	\$PRO	\$	Genetic differences between animals in net profitability per cow joined in a commercial self replacing herd based in New Zealand that targets the production of grass finished steers for the AngusPure programme. Steers are assumed marketed at approximately 530 kg live weight (290 kg carcase weight with 10 mm P8 fat depth) at 20 months of age, with a significant premium for steers that exhibit superior marbling.	Higher selection indexes indicate eater profitability.

Reference Sires

Reference Sire	LINTON 181	07#	NZE20305018107
Date of Birth: 17/09/2018	Register: APR	Mating Type: Al	AMFU,CAFU,DDFU,NHFU

RENNYLEA H106^{sv}

SIRE: NORK163 RENNYLEA K163^{PV} RENNYLEA E176^{PV} RENNYLEA EDMUND E11^{PV} DAM: NZE20305115004 LINTON 15004[#] LINTON 12299[#]

TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selection Index
Transflasman Anger Cartle Bulluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO
EBVs	+3.4	-2.6	-8.4	+2.9	+46	+90	+105	+98	+10	+2.4	-6.4	+66	+13.0	-0.4	-3.9	+2.3	+2.4	¢100
Acc	73%	63%	83%	88%	87%	87%	85%	83%	78%	85%	55%	79%	78%	78%	79%	73%	81%	\$186
Perc	40	91	6	26	74	56	78	57	92	39	14	54	3	55	94	1	44	17

Traits Observed: GL,BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics

Statistics: Number of Herds: 1, Prog Analysed: 15, Genomic Prog: 15

Refe	rence	Sire						L	INTON	 182 1	4#					N	IZE203	05018214
Date of	Birth: 19	9/09/20	18			R	egister: /	APR			Mati	ng Type:	Natural				AMFU,	CAFU,DDFU,NHFU
	SIRE:	NORG4				W					DAM:	NZE2C	(LEA H84) 305116 N 14058 [#]	6081 LI	NTON 1	6081#		
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selection Index
Transfasmen Angue Cattle Builuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO
EBVs	+10.5	+6.9	-5.1	-0.1	+37	+83	+101	+63	+26	+1.8	-7.6	+65	+10.2	+3.7	+5.1	+0.1	+3.6	Ċ014
Acc	75%	64%	94%	97%	96%	96%	94%	92%	84%	92%	62%	84%	86%	85%	85%	80%	85%	\$214
Perc	1	13	39	2	95	77	85	94	5	62	5	58	13	2	2	71	19	4

Traits Observed: BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics

Statistics: Number of Herds: 1, Prog Analysed: 238, Genomic Prog: 238

Refe	rence	Sire						L	INTON	1908	3 5 sv					N	ZE203	05019085
Date of	Birth: 0	9/09/20)19			R	egister: /	APR			Mati	ng Type:	Natural				AMF	U,CAFU,DDF,NHFU
	SIRE:	NORG4				W					DAM:		N 11084 [#] 1 305113 N 198 [#]		NTON 1	3553#		
TACE	CE Mid April 2024 TransTasman Angus Cattle Evaluation																	Selection Index
transfasmen Angur Cartle Svaluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO
EBVs	+4.4	+3.9	-6.2	+5.0	+51	+91	+130	+111	+21	+3.1	-7.3	+81	+11.4	+2.5	+3.5	+0.8	+2.3	¢016
Acc	72%	61%	83%	89%	88%	88%	86%	84%	78%	87%	55%	78%	77%	78%	78%	72%	79%	\$216
Perc	31	42	23	72	51	53	27	35	19	19	6	15	7	7	5	29	47	4
										Traits	observe	ed: BWT,	200WT,	400WT,0	600WT,9	Scan(EM/	A,Rib,Rum	np,IMF),Genomics
											(Statistics	: Numbe	r of Hero	ds: 1, Pro	g Analys	sed: 20, G	enomic Prog: 20

Refe	rence	e Sire						L	INTON	1926	i3 ^{sv}					N	ZE203	05019263
Date of	Birth: 12	2/09/20 ⁻	19			R	egister: /	APR			М	ating Ty	oe: Al				AMF	u,cafu,ddf,nhfu
	SIRE:	NORG4				5V					DAM:	NZE2C			379 AB# INTON	09025	#	
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattl	e Evaluat	tion											Selection Index
Transfasman Angur Cattle Bualuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PR0
EBVs	+5.2	+5.3	-4.3	+3.2	+44	+89	+122	+114	+21	+2.8	-5.9	+74	+8.1	+1.7	+1.6	+1.0	+2.2	Ċ17E
Acc	71%	61%	83%	87%	86%	86%	85%	82%	76%	82%	55%	76%	74%	75%	76%	69%	77%	\$175
Perc	24	26	52	32	81	60	43	31	21	27	21	31	29	15	19	20	50	26

Traits Observed: GL,BWT,200WT,400WT,600WT,Scan(EMA,Rib,Rump,IMF),Genomics

Statistics: Number of Herds: 1, Prog Analysed: 15, Genomic Prog: 15

LINTON 20062^{PV} **Reference Sire** NZE20305020062 Register: APR Mating Type: AI

Date of Birth: 04/09/2020

AMFU,CAFU,DDF,NHFU

RENNYLEA G420sv SIRE: NZE20305018214 LINTON 18214# LINTON 16081#

RENNYLEA G420sv

RENNYLEA K163PV DAM: NZE20305118242 LINTON 18242# LINTON 15674#

TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selection Index
transfusmen Annue Cartle Bualuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO
EBVs	+10.2	+4.2	-10.2	+1.5	+31	+71	+93	+52	+23	+1.6	-7.8	+44	+14.5	+4.8	+4.9	+1.0	+2.9	Ċ014
Acc	65%	56%	83%	85%	85%	84%	84%	81%	75%	81%	48%	74%	73%	73%	74%	66%	76%	\$214
Perc	1	38	2	8	99	95	93	98	10	70	4	96	2	1	2	20	32	5

Traits Observed: GL,BWT,200WT,400WT,600WT,Scan(EMA,Rib,Rump,IMF),Genomics

Statistics: Number of Herds: 1, Prog Analysed: 6, Genomic Prog: 6

Refe	rence	Sire						LI	NTON	2008	8 0 sv					NZ	ZE203	05020080
Date of	Birth: 0	3/09/20	20			R	egister: /	APR			М	ating Typ	oe: Al				AMFU,	CAFU,DDFU,NHFU
	SIRE:	NORM7	IYLEA GE 85 REN IYLEA DE	INYLEA	M785 [₽]	v					DAM:	NZE20	'LEA K16 305117 N 11113#	-	NTON 1	7285#		
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selection Index
Transflasman Angur Cartle Bulluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO
EBVs	+2.0	+2.7	-5.7	+3.9	+48	+74	+104	+51	+25	+2.6	-5.4	+51	+8.0	-0.2	-0.8	+0.4	+3.8	¢160
Acc	66%	57%	83%	86%	86%	85%	84%	81%	76%	83%	49%	75%	73%	74%	74%	67%	77%	\$163
Perc	53	55	30	48	66	92	80	98	5	33	31	90	30	51	58	54	16	38

Traits Observed: GL,BWT,200WT,400WT,600WT,Scan(EMA,Rib,Rump,IMF),Genomics

Statistics: Number of Herds: 1, Prog Analysed: 10, Genomic Prog: 10

Refe	rence	Sire						LI	NTON	2009)6 ^{sv}					N	ZE203	05020096
Date of	Birth: 0	3/09/20	20			R	egister: /	APR			Mati	ng Type:	Natural				AMF	U,CAFU,DDF,NHFU
	SIRE:	NORN6				PV					DAM:	NZE20	′LEA K16 1 305117 N 13246 [#]	245 LII	NTON 1	7245#		
TACE	ACE Mid April 2024 TransTasman Angus Cattle Evaluation														Selection Index			
Transfagment Anger Cartle Duduation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO
EBVs	+2.1	+6.1	-7.7	+5.4	+57	+103	+136	+126	+14	+2.4	-7.3	+67	+8.1	-1.1	-2.3	+0.9	+3.5	¢010
Acc	66%	57%	82%	85%	85%	85%	84%	81%	75%	82%	49%	74%	73%	74%	74%	67%	77%	\$216
Perc	52	19	10	79	23	19	17	17	71	39	6	49	29	71	81	24	21	4
										Traits	observe	ed: BWT,	200WT,	400WT,(500WT,S	Scan(EM/	A,Rib,Rum	np,IMF),Genomics
												Statistic	s: Numb	er of Her	ds: 1, Pro	og Analy	sed: 10, G	ienomic Prog: 10
Refe	rence	Sire						LI	NTON	2023	8 7 sv					N	ZE203	05020237
Date of	Birth: 0	8/09/20	20			R	egister: /	APR			M	ating Typ	oe: Al				AMF	U,CAFU,DDF,NHFU

	SIRE:	NZE203	8 05018 N 1608		NTON 1	8214#					DAM:		305117 14181#		NTON 1	7106#		
	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selection Index
Transfasman Anger Cattle Evaluation													\$PRO					
EBVs	+3.0	+2.6	-4.4	+1.9	+46	+95	+130	+104	+24	+2.7	-7.6	+69	+11.2	+2.4	+3.3	-0.2	+4.6	¢010
Acc	65%	55%	83%	89%	89%	89%	86%	83%	75%	86%	48%	76%	75%	76%	76%	69%	78%	\$216
Perc	44	56	50	12	72	41	26	46	8	29	5	46	8	8	6	84	7	4

Traits Observed: GL,BWT,200WT,400WT,600WT,Scan(EMA,Rib,Rump,IMF),Genomics

RENNYLEA J178PV

Statistics: Number of Herds: 1, Prog Analysed: 25, Genomic Prog: 25

Reference Sires

Reference Sire	LINTON	20312 ^{sv}	NZE20305020312
Date of Birth: 08/09/2020	Register: APR	Mating Type: Al	AMFU,CAFU,DDF,NHFU

TE MANIA BERKLEY B1^{PV} SIRE: NORG420 RENNYLEA G420^{SV} RENNYLEA E528[#] RENNYLEA K163^{pv} DAM: NZE20305116238 LINTON 16238^{sv} LINTON 13409[#]

TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selection Index
Transfasmen Anger Cattle Bualuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PR0
EBVs	+7.5	+3.6	-4.2	+3.9	+43	+83	+107	+71	+23	+2.3	-5.0	+67	+5.7	+1.0	-0.6	+0.2	+5.0	¢171
Acc	69%	60%	83%	88%	87%	87%	85%	83%	77%	84%	54%	77%	75%	76%	77%	70%	78%	\$171
Perc	9	45	53	48	84	78	75	90	11	43	40	50	58	25	54	66	5	30

Traits Observed: GL,BWT,200WT,400WT,600WT,Scan(EMA,Rib,Rump,IMF),Genomics

Statistics: Number of Herds: 1, Prog Analysed: 18, Genomic Prog: 18

Refe	rence	Sire						LI	NTON	2047	'2 ^{sv}					N	ZE203	05020472
Date of	Birth: 2	5/09/20	20			R	egister: A	\PR			Mati	ng Type:	Natural				AMFL	J,CAFU,DDF,NHFU
	SIRE:	NZE203	IYLEA G4 3 05018)N 1205'	315 LIN	NTON 18	8315#					DAM:	NZE2C	/LEA H84) 305117 N 14056	246 LI	NTON 1	7246#		
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selection Index
Transfasman Angur Cattle Builuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO
EBVs	+5.6	+4.1	-6.0	+2.9	+39	+71	+104	+72	+24	+2.7	-4.6	+47	+11.5	+2.6	+1.5	+0.1	+5.8	Ċ171
Acc	65%	55%	82%	87%	86%	86%	84%	81%	75%	84%	47%	75%	73%	74%	75%	67%	77%	\$171
Perc	21	40	26	26	93	95	80	90	8	29	50	94	7	7	20	71	2	29

Traits Observed: BWT,200WT,400WT,600WT,Scan(EMA,Rib,Rump,IMF),Genomics

Statistics: Number of Herds: 1, Prog Analysed: 13, Genomic Prog: 13

Refe	rence	Sire						RE	NNYL	EA G4	20 ^{sv}							NORG420
Date of	Birth: 2	5/07/201	11			R	egister: I	APR			М	ating Typ	oe: Al					AMF,CAF,DDF,NHF
	SIRE:	VTMB1	TE MAI	rkshire NIA Bef Wan Z53	RKLEY E	31 ^{pv}					DAM:	NORES		rime 338 Nnylea 5 ^{pv}		ŧ		
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selection Index
Transfasmen Anger Cattle Builduation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO
EBVs	+10.1	+8.1	-5.9	+2.8	+47	+89	+120	+94	+21	+1.9	-5.1	+69	+8.5	+3.2	+2.7	+0.3	+2.6	¢100
Acc	94%	83%	99%	99%	98%	98%	98%	98%	97%	98%	83%	95%	94%	95%	95%	93%	94%	\$188
Perc	1	6	27	24	69	58	48	63	21	58	37	44	25	4	9	60	39	15
								Tra	aits Obse	erved: Gl	1 - 1	,	,	,	,- · · ·	, ,		MF),DOC,Genomics
											Statist	ics: Num	ber of H	erds: 14,	Prog An	alysed: 1	1238, Ge	nomic Prog: 1097

Refe	rence	e Sire						RE	NNYL	EA M7	'63 ^{pv}							NORM763
Date of	Birth: 0	2/08/20	16			R	egister: A	APR			М	ating Ty	oe: Al					AMF,CAF,DDF,NHF
	SIRE:	NZE146				Reali	ty 839 [;]	¥			DAM:	NOR J8		REGENT INYLEA 90 ^{pv}				
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evalua	tion											Selection Index
Transfasmen Angue Cattle Bualuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO
EBVs	+8.2	+6.0	-9.5	+1.3	+44	+89	+100	+104	+2	+1.7	-5.7	+52	+5.8	+3.9	+3.4	-0.9	+7.1	¢οοε
Acc	78%	73%	98%	98%	97%	98%	97%	96%	93%	97%	68%	89%	89%	89%	89%	85%	88%	\$225
Perc	6	20	3	7	81	60	87	46	99	66	25	88	56	2	6	98	1	2

Traits Observed: GL,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),DOC,Genomics

Statistics: Number of Herds: 7, Prog Analysed: 482, Genomic Prog: 477

RENNYLEA M785PV **Reference Sire NORM785 Register: APR** Mating Type: Natural

Date of Birth: 05/08/2016

AMF,CAF,DDF,NHF

TE MANIA AFRICA A217PV SIRE: NORG317 RENNYLEA G317PV LAWSONS HENRY VIII Y5^{sv}

	5	LAWS	SONS HE								27.11		LEA B46	52#				
	Mid Ap	oril 2024	TransTas	man An	gus Cattle	e Evaluat	tion											Selection Index
Bransfasmen Anger Cartle Buduation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO
EBVs	-3.3	+4.3	-5.6	+5.4	+54	+95	+129	+96	+29	+2.6	-4.3	+59	+6.6	+0.7	+1.8	-0.2	+3.4	\$141
Acc	85%	72%	98%	98%	97%	98%	97%	96%	93%	95%	69%	90%	90%	90%	90%	86%	89%	\$141
Perc	87	37	31	79	36	41	29	61	2	33	57	74	46	30	17	84	22	61

Traits Observed: BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),D0C,Genomics

RENNYLEA B285sv

DAM: NORD633 RENNYLEA D633^{sv}

Statistics: Number of Herds: 3, Prog Analysed: 444, Genomic Prog: 432

Refe	rence	Sire						RE	NNYLI	EA N6	40 ^{pv}							NORN640
Date of	Birth: 2	1/07/201	17			R	egister: /	APR			М	ating Typ	oe: Al					AMF,CAF,DDF,NHF
	SIRE:	NORE11	RENN	ika undi Ylea ei Nry VIII	DMUND						DAM:	NORL	A INTENS 3 81 Ren (Lea F52	INYLEA	L881 ^{sv}	1		
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selection Index
transfasmen Angur Cartle Skaluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PR0
EBVs	+11.3	+7.0	-9.7	+2.3	+44	+86	+107	+77	+23	+3.7	-12.1	+50	+3.7	+3.6	+4.5	-0.7	+3.3	¢040
Acc	81%	72%	97%	98%	97%	97%	96%	94%	88%	93%	66%	87%	86%	86%	86%	81%	86%	\$248
Perc	1	12	2	17	79	69	76	85	13	9	1	91	80	3	3	96	24	1

Traits Observed: GL,CE,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),DOC,Genomics

Statistics: Number of Herds: 5, Prog Analysed: 339, Genomic Prog: 303

Refe	rence	Sire						REM	NYLE	A Q13	849 ^{pv}							NORQ1349
Date of	Birth: 0	3/09/20	19			Regist	er: APR			Ma	ating Typ	oe: Natur	al	A	MF,CAF,[)DF,NHF,I	DWF,MAF,	MHF,OHF,OSF,RGF
	SIRE:	NORM7				V					DAM:	NORN	1PLEMEN 7 03 REN (LEA J20	NYLEA		γ		
TACE	Mid Ap	oril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selection Index
Transfasman Angur Cartle Pulluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PR0
EBVs	+5.4	+0.7	-5.5	+1.3	+43	+92	+105	+90	+18	+2.7	-7.0	+57	+11.0	-0.2	-0.8	+0.4	+6.8	Ċ017
Acc	70%	61%	92%	97%	95%	95%	92%	87%	79%	93%	53%	81%	82%	81%	82%	75%	82%	\$217
Perc	22	74	32	7	84	52	80	69	45	29	8	78	9	51	58	54	1	4

Traits Observed: CE,BWT,200WT,400WT,600WT,SC,Scan(EMA,Rib,Rump,IMF),DOC,Structure(Claw Set x 1, Foot Angle x 1),Genomics

Statistics: Number of Herds: 5, Prog Analysed: 162, Genomic Prog: 171

TransTasman Angus Cattle Evaluation - Mid April 2024 Reference Tables

				BRE	ED AVERAG	E EBVs				
	\$A	\$D	\$GN	\$GS	\$A-L	\$D-L	\$GN-L	\$GS-L	\$PRO	\$T
Brd Avg	+201	+166	+265	+185	+346	+299	+413	+387	+149	+186

* Breed average represents the average EBV of all 2022 drop Australian Angus and Angus-influenced seedstock animals analysed in the Mid April 2024 TransTasman Angus Cattle Evaluation .

				PERCENT	ILE BANDS	TABLE				
% Band	\$A	\$D	\$GN	\$GS	\$A-L	\$D-L	\$GN-L	\$GS-L	\$PRO	\$T
	Greater Profitability									
1%	+278	+234	+370	+266	+454	+397	+545	+520	+235	+238
5%	+257	+215	+340	+243	+424	+369	+509	+481	+210	+224
10%	+245	+205	+324	+231	+407	+354	+489	+461	+197	+216
15%	+237	+197	+313	+222	+397	+344	+476	+448	+188	+211
20%	+231	+192	+305	+216	+388	+336	+465	+437	+181	+207
25%	+225	+187	+297	+210	+381	+330	+456	+428	+175	+203
30%	+221	+183	+291	+205	+374	+323	+448	+420	+170	+199
35%	+216	+179	+285	+200	+367	+318	+440	+412	+165	+196
40%	+212	+175	+279	+196	+362	+312	+433	+405	+160	+193
45%	+208	+171	+273	+191	+356	+307	+425	+398	+156	+190
50%	+203	+168	+268	+187	+350	+302	+418	+391	+151	+187
55%	+199	+164	+262	+182	+344	+297	+411	+384	+147	+184
60%	+195	+160	+256	+178	+337	+291	+403	+376	+142	+181
65%	+190	+156	+250	+173	+331	+285	+395	+369	+137	+178
70%	+185	+152	+243	+168	+323	+278	+386	+360	+131	+174
75%	+179	+147	+235	+162	+315	+271	+376	+351	+125	+170
80%	+172	+141	+227	+155	+305	+263	+364	+340	+118	+166
85%	+164	+135	+216	+147	+293	+252	+350	+326	+110	+160
90%	+154	+126	+203	+137	+278	+239	+331	+308	+98	+152
95%	+138	+112	+182	+121	+253	+218	+300	+279	+81	+141
99%	+107	+87	+145	+91	+203	+175	+244	+220	+48	+119
	Lower Profitability									

* The percentile bands represent the distribution of EBVs across the 2022 drop Australian Angus and Angus-influenced seedstock animals analysed in the Mid April 2024 TransTasman Angus Cattle Evaluation .

											REED	AVE	AGE	EBVS										
	Calvin	Calving Ease	Birth	th			Growth			Ferti	lity			Card	case			Other	er	0)	Structure	¢)	Selection	Indexes
	CEDir	CEDir CEDtrs GL BW	GL	BW	200	400	200 400 600	MCW	Milk	SS	ртс	CWT	CWT EMA RIB P8	RIB	P8	RBY IMF	IMF	NFI-F	DOC	Claw	NFI-F DOC Claw Angle Leg		\$A	\$A-L
Brd Avg	+1.7	+2.8 -4.4	-4.4	44.0	+51	+92	+119	+102	+17	+2.2	-4.6	+67	+6.4	-0.1	-0.3	+0.5	+2.3	+0.22	+21	+0.84	+0.97	+1.02	+201	+346

* Breed average represents the average EBV of all 2022 drop Australian Angus and Angus-influenced seedstock animals analysed in the Mid April 2024 TransTasman Angus Cattle Evaluation

				Σ	Mount Linto		Angus	5 2 Ye	2 Year Old	Bull Q	Bull Quick EBV Table	BV Ta	ble					
Animal Ident	CEDir	Calving Ease CEDtrs GL	g Ease GL	BWT	200	400	Growth 600	MCW	Milk	Fertility SS D	llity DTC	CWT	EMA	Caro RIB	Carcase B P8	RBY	IMF	Index \$PRO
1 INA22T107	+9.4	6.0-	-13.7	+1.1	+40	+88	+105	+87	+20	+0.6	-7.3	+68	+5.9	+1.1	+0.4	+0.4	+3.0	\$172
2 INA22T131	+5.1	+3.9	-8.2	+3.3	+54	+92	+122	+95	+25	+3.8	-5.3	+58	+4.4	-1.6	-3.0	+0.2	+3.8	\$158
3 INA22T083	+2.9	+2.3	-5.2	+3.1	+35	+80	+98	+78	+12	+2.8	-6.9	+40	+6.7	+4.9	+6.5	-0.2	+5.9	\$220
4 INA22T104	+8.3	+4.2	-7.6	6.0+	+44	+88	+111	+86	+21	+2.0	-5.8	+64	+9.2	-1.2	-1.3	+0.6	+6.1	\$205
5 INA22T260	+4.7	+5.3	-6.1	+4.1	+46	+95	+116	+82	+16	+2.3	-5.7	+73	+13.5	+0.0	-0.3	+2.0	+2.0	\$214
6 INA22T159	+1.8	+6.8	-5.2	+1.9	+35	+68	+95	+73	+16	+0.9	-5.1	+47	+4.7	+4.6	+7.2	-1.3	+5.2	\$161
7 INA22T110	+7.7	+5.7	-6.3	+2.3	+55	+101	+118	+123	+8	+2.8	-5.1	+59	+2.8	+0.4	-0.3	0.0+	+5.2	\$206
8 INA22T531	+2.1	-1.0	-5.6	+3.5	+39	+80	+99	+87	+20	+3.4	-5.0	+49	+12.1	+0.5	-1.1	+1.9	+1.0	\$130
9 INA22T140	+5.5	+0.8	4.8	+0.7	+41	+88	+98	+85	+15	+0.4	-7.3	+63	+7.0	+1.1	+1.0	9.0+	+5.4	\$212
10 INA22T560	+11.1	+5.0	-7.7	+1.6	+40	+76	+98	+86	+19	+2.4	-7.6	+48	+3.3	+4.7	+5.6	-0.6	+3.1	\$181
11 INA22T219	+10.0	+7.9	-7.9	-2.3	+35	+71	+83	+67	+13	+2.3	-6.0	+42	+6.5	+5.3	+3.4	-0.9	+7.6	\$206
12 INA22T374	+4.4	+5.3	-8.2	+4.7	+59	+100	+146	+129	+13	+1.9	-5.1	+82	+6.4	-1.2	-4.7	9.0+	+4.7	\$197
13 INA22T170	+8.4	+5.9	-2.7	+0.8	+38	+84	66+	+75	+21	+3.6	-7.4	+58	+12.4	+3.2	+3.5	+1.0	+2.1	\$206
14 INA22T167	+6.6	+0.8	-6.3	+1.9	+37	+65	+97	+61	+28	+1.5	-5.7	+54	+8.8	+2.4	+2.6	+0.2	+4.9	\$163
15 INA22T477	+4.4	-0.8	-6.1	+2.4	+50	+94	+122	+105	+20	+2.7	-9.2	+63	+1.9	+4.8	+1.6	-0.5	+3.8	\$203
16 INA22T108	+7.1	+3.3	-6.8	+3.8	+52	+100	+129	+79	+33	+2.0	-6.6	+75	+1.9	+1.7	+2.8	-0.8	+2.3	\$173
17 INA22T357	+3.5	+5.1	-7.1	+2.7	+41	+78	+100	+82	+19	+1.4	4.1	+47	+8.0	+0.6	+1.2	+0.4	+4.9	\$160
18 INA22T227	+7.6	+0.6	-3.5	+1.2	+40	+84	+99	+72	+19	+3.1	-6.5	+59	+6.1	+0.8	+0.7	+0.2	+4.8	\$186
19 INA22T141	+5.9	+1.7	-5.2	+4.7	+48	+91	+116	+107	+22	+2.2	-7.6	+63	+2.8	+1.5	+1.0	+0.5	+1.2	\$164
20 INA22T185	+2.1	-1.9	-3.1	+3.3	+46	+82	+106	+71	+14	+2.3	-6.3	+63	+8.5	+1.3	+0.8	+0.5	+5.4	\$209
21 INA22T216	+4.7	+4.7	-6.1	+2.4	+40	+81	+100	+80	+21	+1.8	-6.7	+63	+8.5	+1.1	+1.9	+0.9	+1.9	\$172
22 INA22T025	+6.2	+3.5	-8.4	+3.1	+45	+87	+107	+122	+7	+0.8	-6.2	+57	+4.7	+2.0	+1.6	+0.4	+3.8	\$187
23 INA22T337	+6.8	+6.2	-8.7	+3.5	+45	+97	+139	+133	+24	+3.0	-6.8	+66	+9.0	+3.7	+2.3	+0.2	+2.6	\$185
24 INA22T129	+6.1	+0.4	-5.0	+0.3	+43	-90	+110	+75	+23	+2.6	-4.7	+55	+7.0	+0.3	+0.5	-0.4	+7.1	\$186
25 INA22T451	+8.5	+4.0	4.6	+1.4	+38	+78	+105	+79	+22	+0.7	-7.1	+70	+2.9	+2.9	+2.9	-0.2	+2.4	\$163
26 INA22T254	4.8	+3.2	-2.9	+4.8	+53	06+	+120	+102	+15	+0.8	-5.2	+64	+6.3	+0.7	+2.1	0.0+	+1.5	\$138
27 INA22T038	+2.9	-2.4	-5.7	+3.4	+47	-90	+111	+95	+18	+3.5	-8.8	+60	+3.6	+3.0	+2.7	-0.7	+4.8	\$202
28 INA22T579	+3.8	-1.7	4.3	+4.3	+46	+91	+111	+89	+12	+1.4	-6.1	+73	+9.6	+1.1	+0.1	+1.4	+1.4	\$183
29 INA22T121	-1.8	4.8	-2.3	+4.9	+49	+96	+119	+108	+20	+3.3	-7.4	+62	+5.8	-1.1	-2.4	+0.1	+5.6	\$170
30 INA22T136	+9.1	+1.5	-3.7	+3.6	+43	+85	+104	+108	+18	+2.7	-7.3	+57	+3.0	+0.2	-0.7	+0.8	+2.6	\$161
	CEDir	CEDtrs	GL	BWT	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	\$PRO
Translasman Angus Cattle Evaluation	+1.7	+2.8	-4.4	+4.0	+51	+92	+119	+102	+17	+2.2	-4.6	+67	+6.4	-0.1	-0.3	+0.5	+2.3	+149

www.mountlinton.co.nz

40%

25%

Antiolity Canton Cant					Σ	Mount Linto	.inton	Angu	s 2 Yei	ar Old	Bull Q	n Angus 2 Year Old Bull Quick EBV Table	BV Ta	ble					
CEDirCEDirsCitBWT200400BMVMikSSDTCWTR1BP3R1BMMWT3:13:123:123:123:113:133:113:133:113:133:113:133:113:133:113:133:113:133:113:133:113:133:113:133:113:133:113:133:113:133:113:133:113:133:113:133:113:133:113:13<			Calving	Ease				Growth			Fert	lity			Carc	ase			Index
31 32 64 64 644 6410 6412 642 643 640		CEDir	CEDtrs	GL	BWT	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	\$PRO
28 14 10 +73 61 +121 +22 +23 +31 +131 +131 +13 +13 +131	31 INA22T575		+3.2	-8.2	+6.6	+64	+110	+142	+123	+19	+4.5	-7.8	+95	+10.0	+0.0	+0.6	9.0+	+2.1	\$213
4.86.623.76.326.346.117.86.396.126.136.146.136.136.106.236.106.236.106.236.106.236.106.236.106.236.106.236.106.236.106.236.11<	32 INA22T464	-2.8	-1.4	-1.0	+7.3	+51	+87	+121	+92	+22	+3.8	-7.3	+64	+17.2	-0.3	-1.1	+1.4	+5.6	\$218
38 27 38 417 410 456 417 410 457 410	33 INA22T214		+6.2	-3.7	+3.2	+34	+61	+78	+39	+22	+0.3	-4.1	+41	+14.2	+1.4	+2.3	+1.0	+3.9	\$159
454 +22 323 +33 +61 +64 +28 +12 33 +13 +14 +13 +14 +13 +14 +13 +14 +13 +14 +13 +14 +13 +14 +13 +11 +25 +13 +14 +13 +11 +25 +14 +11 +15 +13 +11 +25 +14 +11 +15 +13 +11 +15 +13 +11 +15 +13 +14 +11 +15 +13 +14 +11 +15 +13	34 INA22T063		+2.7	4.8	+1.7	+41	+85	+94	+76	+17	+2.7	-4.8	+42	+4.6	+1.4	+0.5	0.0+	+2.9	\$136
49.664.054.044.1410246.042.041	35 INA22T152		+2.9	-3.2	+2.3	+33	+61	+84	+49	+28	+1.2	-3.8	+36	+10.0	+2.0	+2.3	+0.1	+4.7	\$127
658+1756+32+44+87+110+73+17+25+47+106+106+20+23+05+103+6747.0651171445619611118519201261731441470316547.410101010101010101010101010105617.01017.01010101010101010101057.01017.010101010101010101010105820.117.010101010101010101010105810.110.110.110.110.110.110.110.110.110.110.110.15910.110.110.110.110.110.110.110.110.110.110.110.15910.110.110.110.110.110.110.110.110.110.110.110.15010.110.110.110.110.110.110.110.110.110.110.110.15010.110.110.110.110.110.110.110.110.110.110.110.15010.110.110.1 <t< td=""><td>36 INA22T289</td><td></td><td>+6.8</td><td>-8.0</td><td>+2.3</td><td>+43</td><td>+74</td><td>+102</td><td>+66</td><td>+24</td><td>+1.8</td><td>-6.1</td><td>+66</td><td>+10.2</td><td>+5.5</td><td>+8.3</td><td>-0.1</td><td>+1.9</td><td>\$197</td></t<>	36 INA22T289		+6.8	-8.0	+2.3	+43	+74	+102	+66	+24	+1.8	-6.1	+66	+10.2	+5.5	+8.3	-0.1	+1.9	\$197
+10.0 $+5.0$ $+11.0$ $+10.0$ $+50$ $+11.0$ $+50$ $+11.0$ $+12.0$ $+11.0$ $+$	37 INA22T120		+1.7	-5.6	+3.2	+44	+87	+110	+73	+17	+2.5	-4.7	+63	+10.6	+2.0	+2.3	+0.5	+4.4	\$200
+2.4 $+1.0$ -7.0 $+2.0$ $+3.6$ $+10.4$ $+$	38 INA22T003		+6.5	-11.7	+1.4	+50	+96	+111	+85	6+	+2.6	-7.0	+63	+7.3	+4.4	+4.7	-0.3	+5.6	\$266
5.8-2.36.5+7.9+5.5+102+144+124+124+5.0+7.0+7.3+9.0+0.7-1.0+0.1+4.3+3.7+10-6.8+1.1+5.2+99+128+127+12+5.0+5.5+69+109+0.1-1.0+1.5+1.5-3.2-0.1-1.1-6.1+5.1+5.2+99+128+113+89+11+1.0-5.5+5.9+7.4-3.4-3.4-5.41.3+2.7-1.1-1.1-1.1-5.1+1.1-8.1+1.1+81+1.1 <td< td=""><td>39 INA22T169</td><td></td><td>+1.0</td><td>-7.0</td><td>+2.0</td><td>+43</td><td>+84</td><td>+104</td><td>66+</td><td>+20</td><td>+3.8</td><td>-6.4</td><td>+58</td><td>+7.3</td><td>+0.5</td><td>+1.2</td><td>-0.3</td><td>+6.7</td><td>\$182</td></td<>	39 INA22T169		+1.0	-7.0	+2.0	+43	+84	+104	66+	+20	+3.8	-6.4	+58	+7.3	+0.5	+1.2	-0.3	+6.7	\$182
+3.7+1.06.8+4.1+52+99+128+127+12+12+30-5.5+60+109+0.40.3+1.5+1.5+2.0-3.20.111.76.19.15.1+32+113+89+113+89+11+1.05.0+743.45.41.3+5.71.31.5-3.20.11.76.19.29.31.13+89+113+84+11+1.05.0+743.45.41.3+2.7-6.81.12.01.21.21.31.41.31.41.31.41.31.41.21.41.3-6.81.12.01.41.21.41.31.41.31.41.31.41.21.41.31.41.3-6.81.12.31.61.41.31.41.31.41.31.41.31.41.3-6.81.12.01.12.01.11.31.41.31.41.31.41.41.41.41.41.4-6.91.12.01.12.01.11.31.11.31.41.41.41.41.41.41.41.41.41.4-6.91.12.01.11.31.11.31.41.41.41.41.41.41.41.41.41.41.41.41.4 <t< td=""><td>40 INA22T239</td><td></td><td>-2.3</td><td>-6.5</td><td>+7.9</td><td>+55</td><td>+102</td><td>+144</td><td>+124</td><td>+21</td><td>+5.0</td><td>-7.0</td><td>+73</td><td>+9.0</td><td>+0.7</td><td>-1.0</td><td>+0.1</td><td>+4.3</td><td>\$173</td></t<>	40 INA22T239		-2.3	-6.5	+7.9	+55	+102	+144	+124	+21	+5.0	-7.0	+73	+9.0	+0.7	-1.0	+0.1	+4.3	\$173
3.2.0.11.1.4614514824134894134894114015.04743.45.45.461.36.46.1.347.868.06.29.084469901138844114106.16.54524382.70.54.70.54.761.86.12.07.45.14.24.34.44.14.106.16.14.54.24.30.54.24.34.24.70.81.12.04.14.04.14.104.134.84.144.194.134.134.13 <td>41 INA22T028</td> <td></td> <td>+1.0</td> <td>-6.8</td> <td>+4.1</td> <td>+52</td> <td>66+</td> <td>+128</td> <td>+127</td> <td>+12</td> <td>+3.0</td> <td>-5.5</td> <td>69+</td> <td>+10.9</td> <td>+0.4</td> <td>-0.3</td> <td>+1.5</td> <td>+2.0</td> <td>\$191</td>	41 INA22T028		+1.0	-6.8	+4.1	+52	66+	+128	+127	+12	+3.0	-5.5	69+	+10.9	+0.4	-0.3	+1.5	+2.0	\$191
+7.8 +8.0 -6.2 +9.8 +4.6 +9.9 +1.1 +1.0 -6.1 +5.5 +6.2 +3.8 +2.7 -0.5 +4.7 +8.6 +7.4 -5.1 +3.4 +1.1 +1.0 -0.1 +4.8 +1.1 +1.1 +1.0 +1.1 +1.1 +1.1 +1.2 +1.2 +1.3 +1	42 INA22T470		-0.1	-1.7	+6.1	+51	+82	+113	+89	+19	+0.1	-5.0	+79	+7.4	-3.4	-5.4	+1.3	+2.7	\$122
+8.6+7.4-6.1+2.0+3.4+7.4+87+4.4+19+19+13-9.9+5.5+7.1+4.8+6.3-0.2+2.9-0.8-1.1-3.8+6.6+5.4+97+130+85+2.4+2.5+4.2+86+4.3-0.2+0.7+2.5+9.6+1.1-2.0+1.6+4.3+90+107+88+20+1.6+8.6+9.8-0.2-1.5+1.0+5.7+7.0+7.1-2.0+1.6+3.3+90+107+88+10+1.6*8.8+9.8+0.9+5.4+3.8+7.0+7.0+2.2+37+72+89+64+16+1.6*8.3+5.8+9.8+0.9+5.7+7.0+5.3+1.8*3.7+1.8+7.3+102+10+1.6+1.6*8.3+5.6+1.71.01.51.0+7.0+5.3+1.8+7.8+7.9+7.8+1.6+1.6+1.6+1.6+1.6+1.6+1.6+1.71.01.51.1+7.0+5.3+1.8+1.8+1.8+1.8+1.8+1.8+1.8+1.1+1.6+1.1	43 INA22T215		+8.0	-6.2	+0.8	+46	66+	+113	+84	+11	+1.0	-6.1	+55	+6.2	+3.8	+2.7	-0.5	+4.7	\$226
-0.8 -1.1 -3.8 +6.6 +54 +130 +85 +2.5 4.2 +85 +4.3 -0.8 -0.2 +0.7 +3.5 +9.6 +1.1 -2.0 +1.6 +3.3 +90 +107 +88 +2.6 +1.8 +6.8 +1.5 +1.6 +1.6 +1.6 +1.6 +1.6 +1.6 +1.6 +1.6 +1.8 +1.8 +1.8 +1.6 +1.6 +1.6 +1.6 +1.6 +1.6 +1.6 +1.6 +1.6 +1.6 +1.6 +1.6 +1.7 +1.6 +1.6 +1.6 +1.6 +1.6 +1.6 +1.6 +1.7 +1.6 +1.7 +1.7 +1.7 +1.8 +1.8 +1.1 +1.6 +1.6 +1.6 +1.6 +1.6 +1.7 <td>44 INA22T255</td> <td></td> <td>+7.4</td> <td>-6.1</td> <td>+2.0</td> <td>+34</td> <td>+74</td> <td>+87</td> <td>+44</td> <td>+19</td> <td>+3.3</td> <td>-9.9</td> <td>+52</td> <td>+7.1</td> <td>+4.8</td> <td>+6.3</td> <td>-0.2</td> <td>+2.9</td> <td>\$232</td>	44 INA22T255		+7.4	-6.1	+2.0	+34	+74	+87	+44	+19	+3.3	-9.9	+52	+7.1	+4.8	+6.3	-0.2	+2.9	\$232
+9.6+1.1-2.0+1.6+3.4+90+107+88+20+1.8-5.8+68+9.8-0.9-1.5+1.0+5.7+7.9+6.7-6.0+2.2+3.7+72+89+64+1.6+1.6-6.3+5.5+8.4+2.8+3.6+3.6+3.6+3.6+3.6+3.6+3.6+3.6+3.4+3.4*3.4*3.4*3.4*3.4*3.4*3.4*3.4*3.4*3.6*4.1	45 INA22T536		-1.1	-3.8	+6.6	+54	+97	+130	+85	+24	+2.5	-4.2	+85	+4.3	-0.8	-0.2	+0.7	+2.5	\$152
+7:9 +6.7 -6.0 +2.2 +3.7 +7.2 +8.9 +6.4 +1.6 +1.5 +5.5 +8.4 +2.8 +3.6 +0.4 +3.4 +9.0 +3.8 -3.7 +1.8 +3.8 +7.0 +6.9 +4.4 +3.4 +5.6 +5.2 +1.7 +1.6 +1.7 +1.7 +7.0 +5.3 -3.3 +2.6 +4.2 +7.8 +9.4 +3.4 +5.6 +12.7 +0.4 +1.6 +1.7 +7.0 +5.3 -3.3 +2.6 +4.2 +7.8 +4.3 +2.1 +2.0 +1.7 +1.7 +1.7 +3.3 +1.6 +1.7 +1.6 +1.7 +1.7 +1.2 +1.4 +1.0 +1.0 +1.1 +1.2 +1.2 +1.4 +1.0 +1.2 +1.2 +1.2 +1.2 +1.2 +1.2 +1.2 +1.2 +1.2 +1.2 +1.2 +1.2 +1.2 +1.2 +1.2 +1.2 +1.2 +1.2 +1.2 <td>46 INA22T144</td> <td></td> <td>+1.1</td> <td>-2.0</td> <td>+1.6</td> <td>+43</td> <td>+90</td> <td>+107</td> <td>+88</td> <td>+20</td> <td>+1.8</td> <td>-5.8</td> <td>+68</td> <td>+9.8</td> <td>-0.9</td> <td>-1.5</td> <td>+1.0</td> <td>+5.7</td> <td>\$199</td>	46 INA22T144		+1.1	-2.0	+1.6	+43	+90	+107	+88	+20	+1.8	-5.8	+68	+9.8	-0.9	-1.5	+1.0	+5.7	\$199
+9.0 +3.8 -3.7 +1.8 +3.8 +7.0 +6.4 +5.6 +5.6 +5.7 +10.4 +1.6 +1.6 +1.7 +1.6 +1.7 +1.6 +1.7 +1.6 +1.7 +1.6 +1.7 +1.6 +1.7 +1.6 +1.7 +1.6 +1.7 +1.6 +1.7 +1.6 +1.7 +1.6 +1.7 <t< td=""><td>47 INA22T512</td><td></td><td>+6.7</td><td>-6.0</td><td>+2.2</td><td>+37</td><td>+72</td><td>+89</td><td>+64</td><td>+16</td><td>+1.6</td><td>-8.3</td><td>+55</td><td>+8.4</td><td>+2.8</td><td>+3.6</td><td>+0.4</td><td>+3.4</td><td>\$213</td></t<>	47 INA22T512		+6.7	-6.0	+2.2	+37	+72	+89	+64	+16	+1.6	-8.3	+55	+8.4	+2.8	+3.6	+0.4	+3.4	\$213
+7.0 +5.3 -3.3 +2.6 +42 +78 +94 +43 +21 +2.0 -4.1 +56 +13.1 +0.3 -0.4 +2.0 +2.3 +2.3 +5.7 +4.8 -5.4 +1.8 +26 +46 +16 +16 +13 +0.5 -4.9 +32 +13.1 +0.3 -0.4 +2.0 +2.3 CEDir CEDir GL BWT 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF +1.7 +2.8 -4.4 +4.0 +51 +92 +119 +102 +17 +2.2 -4.6 +67 -6.4 -0.1 -0.3 +0.5 +2.3	48 INA22T371	+9.0	+3.8	-3.7	+1.8	+38	+73	+102	+69	+24	+3.4	-5.6	+52	+12.7	+0.4	+0.1	+1.6	+1.7	\$165
+5.7 +4.8 -5.4 +1.8 +26 +46 +61 +16 +13 +0.5 -4.9 +32 +13.2 +1.0 -0.2 +1.2 +5.0 CEDir CEDir CEDirs GL BWT 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF +1.7 +2.8 -4.4 +4.0 +51 +92 +119 +102 +17 +2.2 -4.6 +67 +6.4 -0.1 -0.3 +0.5 +2.3	49 INA22T231	+7.0	+5.3	-3.3	+2.6	+42	+78	+94	+43	+21	+2.0	-4.1	+56	+13.1	+0.3	-0.4	+2.0	+2.3	\$183
CEDir CEDtrs GL BWT 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF +1.7 +2.8 -4.4 +4.0 +51 +92 +119 +102 +17 +2.2 -4.6 +67 +6.4 -0.1 -0.3 +0.5 +2.3	50 INA22T577	+5.7	+4.8	-5.4	+1.8	+26	+46	+61	+16	+13	+0.5	-4.9	+32	+13.2	+1.0	-0.2	+1.2	+5.0	\$164
	TACE [[buil]] Hantessena Arous Came Franceton	CEDir +1.7	CEDtrs +2.8	GL -4.4	BWT +4.0	200 +51	400 +92	600 +119	MCW +102	Milk +17	SS +2.2	DTC -4.6	CWT +67	EMA +6.4	RIB -0.1	P8 -0.3	RBY +0.5	IMF +2.3	\$PRO +149

Why buy a HD50K-tested bull?

His Breeding Values are very accurate

A young bull that's been HD50K tested has highly accurate BVs. You can therefore be more confident that his performance will match his figures.

You'll make faster production gains

The bull you buy this season will influence your herd for the next 8-10 years. By buying an HD50K-tested bull, your decision is based on the best information possible.

Boost the performance of your beef cow herd

If you breed your own heifer replacements, using a HD50K-tested bull means you can tap into "HeiferSELECT®" – a new commercial farmer tool coming soon.

HeiferSELECT[®] provides the objective information you need to make more accurate decisions about which heifers to "keep or cull". It draws on maternal, growth and carcass (including marbling) traits.

If you're a progressive farmer, you can't afford not to buy a HD50K-tested bull. He will get you where you want to go, faster. Much faster.

More information: www.genetics.zoetis.com/NewZealand

Zoetis New Zealand Limited PO Box 5520, Moray Place, Dunedin 9058, New Zealand Phone: 0800 228 278 or 03 477 5920 • Fax: 03 477 5930 Email: genetics.nz@zoetis.com zoetis.co.nz/genetics

Sale Bulls

Lot 1								l	.INTOI	N T107	7 ^{pv}							INA22	T107
Date of	Birth: 30)/08/202	22		Registe	er: APR			Matir	ng Type:	Natural							AMF,CAF	DDF,NHF
	SIRE:	NZE20	IYLEA G4 305018)n 1608	3214 LI	NTON 1	8214#					DAM:	NZE20	N 14179# 1 305117 N 15004 [;]	'307 LII	NTON 1	7307#		HD	SOK Rer ANISUS
TACE	Mid Ap	oril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selectio	n Index
Transfasmen Angur Cartle Bualuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+9.4	-0.9	-13.7	+1.1	+40	+88	+105	+87	+20	+0.6	-7.3	+68	+5.9	+1.1	+0.4	+0.4	+3.0	¢170	A +
Acc	65%	56%	82%	82%	83%	82%	82%	79%	75%	79%	46%	71%	71%	71%	72%	63%	75%	\$172	
Perc	3	85	1	6	91	62	79	73	27	93	6	49	55	23	36	54	30	29	
					T	raits Obs	served: E	3WT,200	WT,400	WT(x2),9	SC,Scan(ema,Rib,	Rump,IM	F),Struct	ture(Clav	v Set x 1,	, Foot An	gle x 1),Ge	nomics

Purchaser.....

Lot 2 LINTON T131^{PV} INA22 Date of Birth: 07/09/2022 Register: APR Mating Type: Al AMF.CAF.DDF.NHF RENNYLEA G317PV LINTON 13041# SIRE: NORM785 RENNYLEA M785PV DAM: NZE20305116012 LINTON 16012sv HD 50K **RENNYLEA D633**ST LINTON 14108# TACE Mid April 2024 TransTasman Angus Cattle Evaluation Selection Index CEDir CEDtrs GL BW 200 400 600 MCW Milk DTC CWT EMA Rib P8 RBY IMF **ŠPRO** SS **EBVs** +5.1 +3.9 -8.2 +3.3 +54 +92 +122 +95 +25 +3.8 -5.3 +58 +4.4 -1.6 -3.0 +0.2 +3.8 \$158 Асс 58% 81% 82% 80% 79% 49% 72% 72% 71% 72% 64% 75% 67% 82% 82% 83% 76% Perc 25 42 34 36 50 43 61 6 8 33 77 73 81 89 66 16 43 7

Traits Observed: BWT,200WT,400WT(x2),SC,Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

25%

\$.....

40%

Lot 3 LINTON T083 ^{PV}	INA22T083
Date of Birth: 02/09/2022 Register: APR Mating Type: AI	AMF,CAF,DDF,NHF
MATAURI REALITY 839# LINTON 16190# SIRE: NORM763 RENNYLEA M763 ^{PV} DAM: NZE20305119770 LINTON 19770 ^{SV} RENNYLEA J833 ^{PV} LINTON 14103#	
TACE Mid April 2024 TransTasman Angus Cattle Evaluation	Selection Index
CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DTC CWT EMA Rib P8 RBY IMF	\$PR0
EBVs +2.9 +2.3 -5.2 +3.1 +35 +80 +98 +78 +12 +2.8 -6.9 +40 +6.7 +4.9 +6.5 -0.2 +5.9	6000 A+
Acc 65% 56% 82% 82% 83% 81% 81% 79% 75% 79% 46% 71% 71% 70% 71% 63% 75%	\$220
Perc 45 60 37 30 97 84 88 84 86 27 9 98 45 1 1 84 2	3

Traits Observed: BWT,200WT,400WT(x2),SC,Scan(EMA,Rib,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

Lot 4	ļ							L	INTO	N T104	4 ^{pv}							INA22	2T104
Date of I	3irth: 30	/08/202	22		Registe	er: APR			Ма	ating Typ	e: Al							AMF,CAF	,DDF,NHF
	SIRE:	NORQ1	IYLEA M [.] 349 RE IYLEA N7	NNYLE	a Q134	9 ^{pv}					DAM:	NZE20	N 14192# 1 305116 N 11077#	5262 LI	NTON 1	6262#		HD!	SOK (or ANGUS
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selecti	on Index
Transfasman Angur Cartle Svaluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+8.3	+4.2	-7.6	+0.9	+44	+88	+111	+86	+21	+2.0	-5.8	+64	+9.2	-1.2	-1.3	+0.6	+6.1	¢00E	A+
Acc	63%	54%	82%	82%	83%	81%	81%	78%	73%	79%	42%	70%	70%	69%	70%	61%	74%	\$205	
Perc	5	38	10	5	80	63	68	75	21	54	23	61	19	73	67	41	2	7	

Traits Observed: BWT.200WT.400WT(x2),SC.Scan(EMA,Rib,Rump,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

Purchaser.....

www.mountlinton.co.nz

\$.....

Sale Bulls

Lot !	5							L	INTO	N T26	Osv							INA22 1	Г26
te of	Birth: 09	9/09/202	22		Registe	er: APR				ating Typ								AMF,CAF,I	DDF,I
	SIRE:	NORG4		RKLEY B1 NNYLEA		V					DAM:	N7F20	'LEA G25 1 305115 N 12203*	24611	NTON 1	5246#		HDS	OK for ANGUS
ACE	Mid An		-	sman Ang	uus Cattle	• Fvalua	tion					LINTO	12205"					Selection	n Inde
dasman konur tir buduation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$pro	
BVs	+4.7	+5.3	-6.1	+4.1	+46	+95	+116	+82	+16	+2.3	-5.7	+73	+13.5	+0.0	-0.3	+2.0	+2.0		A
Асс	69%	61%	83%	82%	83%	82%	82%	80%	77%	80%	54%	74%	73%	73%	74%	67%	77%	\$214	
Perc	28	26	24	52	71	43	58	80	59	43 Troit	25	33	3	46	48	2 Con/EM/	55		
										lfdll	s observ	eu: Bw	1,200 1	,400 W I	(XZ),SC,	SCGU(EM/	4,810,80	mp,IMF),Ger	10111
chac	or													¢					
chas	CI													ې					
	-										a cu								-
ot								l		N T159								INA22	
te of	Birth: 07	7/09/202		717 PV	Registe	er: APR			Ma	ating Typ	e: Al				1 P V			AMF,CAF,I	DDF,
	SIRE	NORM7	IYLEA GE 185 RFN	NYLEA	M785 ^p	V					DAM.	NZE20	(LEA EDN) 1305115			5234#		HDS	OK
	_	RENN	IYLEA DO	633 ^{sv}							0/11		13409			5251			for ANGUS
\CE	Mid Ap	oril 2024	TransTas	sman Ang	gus Cattl	e Evalua	tion	1		1	1	1		1		I		Selectior	n Inde
e annan Angur Swaluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	_
BVs	+1.8	+6.8	-5.2	+1.9	+35	+68	+95	+73	+16	+0.9	-5.1	+47	+4.7	+4.6	+7.2	-1.3	+5.2	\$161	A
		6 00/	0.00/	83%	0/0/	82%	83%	81%	77%	81%		740/	700/	770/	7/0/	66%	770/	2101	
	69% 55	60% 13	83% 37	12	84% 98	97	91	89	61	88	52% 37	74% 94	73% 70	73%	74%	99	77% 4	39	
Acc Perc										88	37	94	70	1	1	99	4	39 mp,IMF),Ger	nomi
Perc	55	13	37							88	37	94	70	1	1	99	4		nom
Perc	55		37	12	98	97	91		61	88 Trait	37 s Observ	94 /ed: BW ⁻	70	1	1	99	4		nomi
erc rchas	55 er	13	37	12	98	97	91	89	61	88 Trait	37 ss Observ	94 /ed: BW ⁻	70	1	1	99	4	mp,IMF),Ger	
Perc rchas	55 er	13	37	12	98	97	91	89	61 .INTO	88 Trait N T11(37 s Observ	94 /ed: BW ⁻	70	1	1	99	4	mp,IMF),Ger	T1 1
Perc rchas	55 er	13	22	12	98 Registe	97	91	89	61 .INTO	88 Trait	37 s Observ	94 ved: BW	70 Г,200W1	1 ,400WT \$	1	99	4	mp,IMF),Ger	T1 1
Perc rchas	55 er 7 Birth: 05	13 5/09/202 MATA	37 22 AURI REA	12 LITY 839	98 Registo	97 er: APR	91	89	61 .INTO	88 Trait N T11(37 s Observ) SV ie: Al	94 red: BW LINTOP	70 7,200W1	1 ,400WT \$	1 (x2),SC,	99 Scan(EM/	4	mp,IMF),Ger	T1 1 DDF,
Perc rchas	55 er 7 Birth: 05	13 5/09/202 MATA NORM7	37 22 AURI REA	12 LITY 839	98 Registo	97 er: APR	91	89	61 .INTO	88 Trait N T11(37 s Observ) SV ie: Al	94 ved: BW [*] LINTOP NZE20	70 7,200W1	1 ,400WT \$	1 (x2),SC,	99 Scan(EM/	4	INA22 AMF,CAF,I	T1 1 DDF,
rchas . ot	55 er 7 Birth: 05 SIRE:	13 5/09/202 MATA NORM7 RENN	37 22 AURI REA '63 REN IYLEA J8	12 LITY 839	98 Regista # M763 ^p	97 er: APR v	91	89	61 .INTO	88 Trait N T11(37 s Observ) SV ie: Al	94 ved: BW [*] LINTOP NZE20	70 (200W1 1,200W1	1 ,400WT \$	1 (x2),SC,	99 Scan(EM/	4	INA22 AMF,CAF,I	T11 DDF, COR
rchas	55 er 7 Birth: 05 SIRE:	13 5/09/202 MATA NORM7 RENN	37 22 AURI REA '63 REN IYLEA J8	12 LITY 839 INYLEA 333PV	98 Regista # M763 ^p	97 er: APR v	91	89	61 .INTO	88 Trait N T11(37 s Observ) SV ie: Al	94 ved: BW [*] LINTOP NZE20	70 (200W1 1,200W1	1 ,400WT \$	1 (x2),SC,	99 Scan(EM/	4	INA22 AMF,CAF,I	T1 [°] DDF,
erchas ot te of ACE BVs	55 er Birth: 05 SIRE: Mid Ap CEDir +7.7	5/09/202 MATA NORM7 RENN pril 2024 CEDtrs +5.7	22 URI REA '63 REN IYLEA J8 TransTas GL -6.3	12 LITY 839 INYLEA 33 ^{PV} man Ang BW +2.3	98 Registo # M763 ^p gus Cattl 200 +55	97 er: APR v e Evalua 400 +101	91 tion 600 +118	89 MCW +123	61 INTO Milk +8	88 Trait N T11(ating Typ SS +2.8	37 Is Observ Osv Ie: Al DAM: DTC -5.1	94 red: BW LINTOP NZE20 LINTOP CWT +59	70 7200WT 7,200WT 18216# 305120 17562# EMA +2.8	1 ,400WT \$ 20611 LII Rib +0.4	1 (x2),SC,S NTON 2 P8 -0.3	99 5can(EM/ 20611# RBY +0.0	4 A,Rib,Ru IMF +5.2	INA22 AMF,CAF,I Selection \$PR0	T1 [°] DDF,
erc rchas ot te of BVs Acc	55 er Birth: 05 SIRE: Mid Ap CEDir +7.7 65%	5/09/202 MATA NORM7 RENN ril 2024 CEDtrs +5.7 57%	22 URI REA '63 REN IYLEA J8 TransTas GL -6.3 82%	12 LITY 839 INYLEA 33 ^{PV} man Ang BW +2.3 81%	98 Registo # M763 ^p gus Cattlo 200 +55 83%	97 er: APR v e Evalua 400 +101 81%	91 tion 600 +118 81%	89 MCW +123 79%	61 .INTO Milk +8 74%	88 Trait N T11(ating Typ SS +2.8 79%	37 is Observ)sv e: Al DAM: DTC -5.1 45%	94 red: BW LINTOP NZE20 LINTOP CWT +59 71%	70 7200WT 7,200WT 18216# 305120 17562# EMA +2.8 70%	1 ,400WT \$ p611 LI Rib +0.4 70%	1 (x2),5C,5 NTON 2 P8 -0.3 71%	99 5can(EM/ 20611# +0.0 62%	4 A,Rib,Ru IMF +5.2 75%	INA22 AMF,CAF,I Selection	T1 [°] DDF,
erc rchas ot te of BVs Acc	55 er Birth: 05 SIRE: Mid Ap CEDir +7.7	5/09/202 MATA NORM7 RENN pril 2024 CEDtrs +5.7	22 URI REA '63 REN IYLEA J8 TransTas GL -6.3	12 LITY 839 INYLEA 33 ^{PV} man Ang BW +2.3	98 Registo # M763 ^p gus Cattl 200 +55	97 er: APR v e Evalua 400 +101	91 tion 600 +118	89 MCW +123	61 INTO Milk +8	88 Trait N T11(ating Typ SS +2.8	37 s Observ) sv ne: Al DAM: DTC -5.1 45% 37	94 red: BW LINTOP NZE20 LINTOP CWT +59 71% 74	70 7200WT 7,200WT 1,200WT 1,200WT 1,200	1 ,400WT \$ 20611 LII Rib +0.4 70% 37	1 (x2),5C,5 NTON 2 P8 -0.3 71% 48	99 5can(EM/ 20611# +0.0 62% 76	4 A,Rib,Ru IMF +5.2 75% 4	INA22 AMF,CAF,I Selection \$PR0 \$206 7	T11 DDF, Core
erc rchas ot te of BVs Acc	55 er Birth: 05 SIRE: Mid Ap CEDir +7.7 65%	5/09/202 MATA NORM7 RENN ril 2024 CEDtrs +5.7 57%	22 URI REA '63 REN IYLEA J8 TransTas GL -6.3 82%	12 LITY 839 INYLEA 33 ^{PV} man Ang BW +2.3 81%	98 Registo # M763 ^p gus Cattlo 200 +55 83%	97 er: APR v e Evalua 400 +101 81%	91 tion 600 +118 81%	89 MCW +123 79%	61 .INTO Milk +8 74%	88 Trait N T11(ating Typ SS +2.8 79%	37 s Observ) sv ne: Al DAM: DTC -5.1 45% 37	94 red: BW LINTOP NZE20 LINTOP CWT +59 71% 74	70 7200WT 7,200WT 1,200WT 1,200WT 1,200	1 ,400WT \$ 20611 LII Rib +0.4 70% 37	1 (x2),5C,5 NTON 2 P8 -0.3 71% 48	99 5can(EM/ 20611# +0.0 62% 76	4 A,Rib,Ru IMF +5.2 75% 4	INA22 AMF,CAF,I Selection \$PR0	T11 DDF, Core
orchas ot a te of BVs Acc Perc	55 er Birth: 05 SIRE: Mid Ap CEDir +7.7 65% 8	5/09/202 MATA NORM7 RENN ril 2024 CEDtrs +5.7 57% 23	37 22 22 23 24 23 27 22 22 22	12 LITY 839 INYLEA 33 ^{PV} man Ang BW +2.3 81% 17	98 Registo [#] M763 ^p gus Cattl 200 +55 83% 30	97 er: APR v e Evalua 400 +101 81% 25	91 600 +118 81% 53	89 MCW +123 79% 20	61 .INTO Milk +8 74% 98	88 Trait N T11(ating Typ SS +2.8 79% 27	37 s Observ) sv ne: Al DAM: DTC -5.1 45% 37 Traits O	94 red: BW NZE20 LINTOP CWT +59 71% 74 bserved:	70 7200WT 7,200WT 1,200WT 1,200WT 30512(1,17562# EMA +2.8 70% 87 BWT,20	1 ,400WT \$ 20611 LII Rib +0.4 70% 37	1 (x2),5C,5 NTON 2 P8 -0.3 71% 48	99 5can(EM/ 20611# +0.0 62% 76	4 A,Rib,Ru IMF +5.2 75% 4	INA22 AMF,CAF,I Selection \$PR0 \$206 7	T11 DDF, COF, Frances In Inde
orchas ot a te of BVs Acc Perc	55 er Birth: 05 SIRE: Mid Ap CEDir +7.7 65% 8	5/09/202 MATA NORM7 RENN ril 2024 CEDtrs +5.7 57% 23	37 22 22 23 24 23 27 22 22 22	12 LITY 839 INYLEA 33 ^{PV} man Ang BW +2.3 81%	98 Registo [#] M763 ^p gus Cattl 200 +55 83% 30	97 er: APR v e Evalua 400 +101 81% 25	91 600 +118 81% 53	89 MCW +123 79% 20	61 .INTO Milk +8 74% 98	88 Trait N T11(ating Typ SS +2.8 79% 27	37 s Observ) sv ne: Al DAM: DTC -5.1 45% 37 Traits O	94 red: BW NZE20 LINTOP CWT +59 71% 74 bserved:	70 7200WT 7,200WT 1,200WT 1,200WT 30512(1,17562# EMA +2.8 70% 87 BWT,20	1 ,400WT \$ 20611 LII Rib +0.4 70% 37	1 (x2),5C,5 NTON 2 P8 -0.3 71% 48	99 5can(EM/ 20611# +0.0 62% 76	4 A,Rib,Ru IMF +5.2 75% 4	INA22 AMF,CAF,I Selection \$PR0 \$206 7	T11 DDF, COF, Frances In Inde
Perc rchas .ot t te of BVs Acc Perc rchas	55 er Birth: 05 SIRE: Mid Ap CEDir +7.7 65% 8 er	5/09/202 MATA NORM7 RENN ril 2024 CEDtrs +5.7 57% 23	37 22 22 23 24 23 27 22 22 22	12 LITY 839 INYLEA 33 ^{PV} man Ang BW +2.3 81% 17	98 Registo [#] M763 ^p gus Cattl 200 +55 83% 30	97 er: APR v e Evalua 400 +101 81% 25	91 600 +118 81% 53	89 MCW +123 79% 20	61 .INTO Milk +8 74% 98	88 Trait N T11(ating Typ 55 +2.8 79% 27	37 is Observ Osv e: Al DAM: DTC -5.1 45% 37 Traits O	94 red: BW NZE20 LINTOP CWT +59 71% 74 bserved:	70 7200WT 7,200WT 1,200WT 1,200WT 1,200	1 ,400WT \$ 20611 LII Rib +0.4 70% 37	1 (x2),5C,5 NTON 2 P8 -0.3 71% 48	99 5can(EM/ 20611# +0.0 62% 76	4 A,Rib,Ru IMF +5.2 75% 4	INA22 AMF,CAF,I Selection \$PR0 \$206 7 mp,IMF),Ger	T11 DDF, COF, COF, COF, COF, COF, COF, COF, CO
Perc rchas .ot 7 te of BVs Acc Perc rchas	55 er Birth: 05 SIRE: Mid Ap CEDir +7.7 65% 8 er	13 5/09/202 MATA NORM7 RENN oril 2024 CEDtrs +5.7 57% 23	37 22 22 23 23 23 24 24 25 22 22	12 LITY 839 INYLEA 33 ^{PV} man Ang BW +2.3 81% 17	98 Regista # M763 ^p gus Cattlo +55 83% 30	97 er: APR v 2 Evalua 400 +101 81% 25	91 600 +118 81% 53	89 MCW +123 79% 20	61 .INTO Milk +8 74% 98	88 Trait N T11(ating Typ 55 +2.8 79% 27 N T53	37 s Observ)SV e: Al DAM: DTC -5.1 45% 37 Traits O	94 red: BW NZE20 LINTOP CWT +59 71% 74 bserved:	70 7200WT 7,200WT 1,200WT 1,200WT 1,200	1 ,400WT \$ 20611 LII Rib +0.4 70% 37	1 (x2),5C,5 NTON 2 P8 -0.3 71% 48	99 5can(EM/ 20611# +0.0 62% 76	4 A,Rib,Ru IMF +5.2 75% 4	INA22 AMF,CAF,I Selection \$PR0 \$206 7 mp,IMF),Ger	T11 DDF, COK Market Coc
Perc rchas .ot 7 te of BVs Acc Perc rchas	55 er Birth: 05 SIRE: Mid Ap CEDir +7.7 65% 8 er	5/09/202 MATA NORM7 RENN ril 2024 CEDtrs +5.7 57% 23	37 22 22 23 23 24 27 22 23	12 LITY 839 INYLEA 33 ^{PV} man Ang BW +2.3 81% 17	98 Registo [#] M763 ^p gus Cattl 200 +55 83% 30	97 er: APR v 2 Evalua 400 +101 81% 25	91 600 +118 81% 53	89 MCW +123 79% 20	61 .INTO Milk +8 74% 98	88 Trait N T11(ating Typ 55 +2.8 79% 27	37 s Observ)SV e: Al DAM: DTC -5.1 45% 37 Traits O	94 red: BW LINTOP NZE20 LINTOP CWT +59 71% 74 bserved:	70 7200WT 7200WT 7200WT 7200WT 7200WT 7200 7000 7200 70000 7000 7000 7000 7000 7000 7000 7000 700	1 ,400WT \$ 2,0611 LII Rib +0.4 70% 37 00WT,40 \$	1 (x2),5C,5 NTON 2 P8 -0.3 71% 48	99 5can(EM/ 20611# +0.0 62% 76	4 A,Rib,Ru IMF +5.2 75% 4	INA22 AMF,CAF,I Selection \$PR0 \$206 7 mp,IMF),Ger	T11 DDF, COK Market Coc
Perc rchas .ot 7 te of BVs Acc Perc rchas	55 er Birth: 05 SIRE: Mid Ap CEDir +7.7 65% 8 er Birth: 19	5/09/202 MATA NORM7 RENN ril 2024 CEDtrs +5.7 57% 23	37 22 22 23 23 22 24 22 21 22 21 22 21 22	12 LITY 839 INYLEA 33 ^{PV} man Ang BW +2.3 81% 17	98 Regista [#] M763 ^p gus Cattl 200 +55 83% 30 Regista	97 er: APR v e Evalua 400 +101 81% 25 er: APR	91 600 +118 81% 53	89 MCW +123 79% 20	61 .INTO Milk +8 74% 98	88 Trait N T11(ating Typ 55 +2.8 79% 27 N T53	37 s Observ)sv e: Al DAM: DTC -5.1 45% 37 Traits O	94 red: BW LINTOP NZE20 LINTOP CWT +59 71% 74 bserved:	70 7200WT 7200WT 1200WT 18216# 305120 17562# EMA +2.8 70% 87 BWT,20 N 10024*	1 ,400WT \$ 2,611 LII Rib +0.4 70% 37 00WT,40 \$	1 (x2),5C,5 (x2),5C,5 P8 -0.3 71% 48 0WT(x2	99 5can(EM/ 20611# +0.0 62% 76),SC,Scar	4 A,Rib,Ru IMF +5.2 75% 4	INA22 AMF,CAF,I Selection \$PR0 \$206 7 mp,IMF),Ger	T11 DDF, Inde A nomi

TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattl	e Evaluat	tion											Selectio	n Index
Transference Anger Cartle Builluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+2.1	-1.0	-5.6	+3.5	+39	+80	+99	+87	+20	+3.4	-5.0	+49	+12.1	+0.5	-1.1	+1.9	+1.0	¢120	Α
Acc	64%	55%	81%	81%	82%	80%	80%	78%	73%	78%	44%	71%	70%	70%	71%	62%	75%	\$130	_
Perc	52	85	31	38	93	84	87	73	26	13	40	91	5	34	63	2	81	72	

Traits Observed: BWT,200WT,400WT(x2),SC,Scan(EMA,Rib,Rump,IMF),Genomics

Purchaser......\$......\$

25% 40%

Lot	}							L	INTO	N T140) ^{pv}							INA22	2 T140
Date of	Birth: 07	//09/202			Regist	er: APR			Ma	ating Typ	e: Al							AMF,CAI	,DDF,NHF
		NORQ1 RENN		NNYLE							DAM:	NZE20	N 18308 [;] 3 0512 N 18562 [;]	0494 L	INTON	20494	PV		50K (or ANGUS
TACE	Mid Ap	oril 2024	TransTas	man Ang	gus Cattl	e Evaluat	tion											Selecti	on Index
Transfasmen Angur Cattle Bualuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+5.5	+0.8	-4.8	+0.7	+41	+88	+98	+85	+15	+0.4	-7.3	+63	+7.0	+1.1	+1.0	+0.6	+5.4	\$212	A +
Acc Perc	63% 21	53% 73	82% 43	82% 4	83% 90	81% 64	81% 88	78% 77	73% 64	79% 95	41% 6	69% 64	69% 41	69% 23	70% 27	60% 41	74%	5	
reit	21		45	4		04	00	- 11	04			•••	••					np,IMF),G	nomics
Purchas	er													\$					
Lot	0							L	INTO	N T560) _{bn}							INA22	2 T 560
		/10/202	2		Registe	er: APR		L		1 T56(ating Typ									2 T560 F,DDF,NHF
	Birth: 18	RENN NORN6	IYLEA ED	DMUND E NNYLEA 881 ^{sv}	11 ^{pv}			L			e: Al	NZE20	\ 16018 [#] 305118 \ 14339 [#]	3736 LI	NTON 1	8736#		AMF,CAI	
	Birth: 18 SIRE:	RENN NORN6	IYLEA EE 40 REI IYLEA L8	NNYLEA 381 ^{sv}	11 ^{pv} N640	PV	tion	L			e: Al	NZE20	305118	3736 LI	NTON 1	8736#			F,DDF,NHF
Date of	Birth: 18 SIRE:	RENN NORN6 RENN	IYLEA EE 40 REI IYLEA L8	NNYLEA 381 ^{sv}	11 ^{pv} N640	PV	tion 600	L			e: Al	NZE20	305118	3736 LI	NTON 1 P8	8736# RBY	IMF		,DDF,NHF
Date of	Birth: 18 SIRE: Mid Ap CEDir +11.1	RENN NORN6 RENN ril 2024 CEDtrs +5.0	IYLEA EE 40 REI IYLEA L& TransTas GL -7.7	NNYLEA 881 ^{sv} man Ang BW +1.6	11 ^{PV} N640 gus Cattle 200 +40	e Evaluat 400 +76	600 +98	MCW +86	Milk +19	ss +2.4	e: Al DAM: DTC -7.6	NZE20 LINTON CWT +48	305118 14339 [#] EMA +3.3	Rib +4.7	P8 +5.6	RBY -0.6	+3.1	AMF,CAR Selecti \$PRO	,DDF,NHF
Date of TACE EBVs Acc	Birth: 18 SIRE: Mid Ap CEDir	RENN NORN6 RENN ril 2024 CEDtrs +5.0 58%	IYLEA EE 40 REI IYLEA L& TransTas GL -7.7 82%	NNYLEA 381 ^{5V} man Ang BW +1.6 82%	11 ^{₽V} N640 200 +40 83%	e Evaluat 400 +76 81%	600 +98 82%	MCW +86 79%	Mi Milk +19 75%	SS +2.4 79%	e: AI DAM: DTC -7.6 47%	NZE20 LINTON CWT +48 71%	305118 14339 [#] EMA +3.3 71%	Rib +4.7 71%	P8	RBY -0.6 63%	+3.1 75%	AMF,CAR Selecti \$PRO \$181	,DDF,NHF
Date of	Birth: 18 SIRE: Mid Ap CEDir +11.1	RENN NORN6 RENN ril 2024 CEDtrs +5.0	IYLEA EE 40 REI IYLEA L& TransTas GL -7.7	NNYLEA 881 ^{sv} man Ang BW +1.6	11 ^{PV} N640 gus Cattle 200 +40	e Evaluat 400 +76	600 +98	MCW +86	Milk +19	ss +2.4	e: Al DAM: DTC -7.6 47% 5	NZE20 LINTON CWT +48 71% 93	EMA +3.3 71% 84	Rib +4.7 71%	P8 +5.6 72% 1	RBY -0.6 63% 94	+ <u>3.1</u> 75% 28	AMF,CAR Selecti \$PRO	on Index

Lot 1	1							l	.INTOI	N T219) ^{pv}							INA2	2T219
Date of E	Birth: 08	/09/202	22		Registe	er: APR			Ma	ating Typ	e: Al							AMFU,CA	F,DDF,NHF
	SIRE:	NORM7				V					DAM:	NZE20	N 16101# 305119 N 15180#	9488 LI	NTON 1	19488 ^{sı}	I		SOK Re ANGLES
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	ion											Selecti	ion Index
Transfagment Angur Cartle Dulluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+10.0	+7.9	-7.9	-2.3	+35	+71	+83	+67	+13	+2.3	-6.0	+42	+6.5	+5.3	+3.4	-0.9	+7.6	¢000	A +
Acc	67%	59%	83%	83%	84%	82%	82%	80%	76%	80%	49%	73%	72%	72%	73%	64%	76%	\$206	
Perc	2	7	8	1	97	95	98	92	79	43	20	97	47	1	6	98	1	7	
											Trait	s Observ	ed: BW1	,400WT	(x2),SC,S	Scan(EM/	A,Rib,Ru	mp,IMF),G	enomics

Lot 12 LINTON T374 ^{PV}	INA22T374
Date of Birth: 28/09/2022 Register: APR Mating Type: Natural	AMF,CAF,DDF,NHF
RENNYLEA N640 ^{PV} RENNYLEA G420 ^{SV} SIRE: NZE20305020096 LINTON 20096 ^{SV} DAM: NZE20305119027 LINTON 19027# LINTON 17245 [#] LINTON 17478 [#]	
TACE Mid April 2024 TransTasman Angus Cattle Evaluation	Selection Index
CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DTC CWT EMA Rib P8 RBY IMF	\$PRO
EBVs +4.4 +5.3 -8.2 +4.7 +59 +100 +146 +129 +13 +1.9 -5.1 +82 +6.4 -1.2 -4.7 +0.6 +4.7	¢107 A+
Acc 65% 56% 82% 82% 83% 81% 81% 79% 74% 79% 44% 71% 71% 70% 71% 62% 75%	\$197
Perc 31 26 7 66 16 28 7 14 78 58 37 14 49 73 97 41 6	11

Traits Observed: BWT,200WT,400WT(x2),SC,Scan(EMA,Rib,Rump,IMF),Genomics

Sale Bulls

Lot	13							L	.INTOI	N T170) ^{pv}							INA22T170
Date of	Birth: 07	/09/202	2		Registe	er: APR			Matir	ng Type:	Natural							AMF,CAF,DDF,NHF
	SIRE:	NZE20	IYLEA G4 305018)N 1608	3214 LII	NTON 1	8214#					DAM:	RENNY NZE2C LINTOI	(LEA J178) 305118 N 15058#	3 ^{pv} 130 LII	NTON 1	8130#		
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evalua	tion											Selection Index
TransTasman Angur Cattle Bualuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PR0
EBVs	+8.4	+5.9	-2.7	+0.8	+38	+84	+99	+75	+21	+3.6	-7.4	+58	+12.4	+3.2	+3.5	+1.0	+2.1	\$206 A
Acc	66%	56%	83%	82%	83%	82%	82%	80%	75%	79%	47%	71%	71%	71%	72%	63%	75%	\$200
Perc	5	21	76	4	95	73	87	87	19	10 Trait	6 c Obcorn	76	5	4 400WT	5	20	52	7 mp,IMF),Genomics
										IIait	S ODSELV	eu. Dw	1,200 991	,400 10 1	(XZ),3C,2	ocan(EM	4, KID, KUI	np,inr),denomics
Durchas	or													ć				
Pulcias														ب				
											=D\/							
Lot								L		N T167								INA22T167
Date of	Birth: 06	5/09/202		17DV	Registe	er: APR			Ma	ating Typ	e: Al			PV				AMF,CAF,DDF,NHF
	SIRE:	NORM7	IYLEA G3 85 REN		M785 ^p	v					DAM:		(LEA K16) 305117		NTON 1	7145 ^{sv}		HDSOK
	511121										57.0.11							for ANGUS
			IYLEA D6									LINIU	N 15506#					
TACE	Mid Ap	ril 2024			gus Cattle	e Evalua	tion					LINIO	N 15506*					Selection Index
TACE	Mid Ap Cedir				gus Cattle 200	e Evalua 400	tion 600	MCW	Milk	SS	DTC	CWT	N 15506# EMA	Rib	P8	RBY	IMF	Selection Index \$PR0
EBVs	CEDir +6.6	ril 2024 CEDtrs +0.8	TransTas GL -6.3	man Ang BW +1.9	200 +37	400 +65	600 +97	+61	+28	+1.5	-5.7	CWT +54	EMA +8.8	Rib +2.4	+2.6	+0.2	+4.9	\$PRO
EBVs Acc	CEDir +6.6 67%	ril 2024 CEDtrs +0.8 58%	TransTas GL -6.3 83%	man Ang BW +1.9 82%	200 +37 83%	400 +65 82%	600 +97 82%	+61 80%	+28 76%	+1.5 80%	- 5.7 50%	CWT +54 73%	EMA +8.8 73%	Rib +2.4 72%	+2.6 73%	+0.2 65%	+4.9 76%	\$PRO \$163
EBVs	CEDir +6.6	ril 2024 CEDtrs +0.8	TransTas GL -6.3	man Ang BW +1.9	200 +37	400 +65	600 +97	+61	+28	+1.5 80% 73	-5.7 50% 25	CWT +54 73% 85	EMA +8.8 73% 23	Rib +2.4 72% 8	+2.6 73% 10	+0.2 65% 66	+4.9 76% 5	\$PRO \$163 37
EBVs Acc	CEDir +6.6 67%	ril 2024 CEDtrs +0.8 58%	TransTas GL -6.3 83%	man Ang BW +1.9 82%	200 +37 83%	400 +65 82%	600 +97 82%	+61 80%	+28 76%	+1.5 80% 73	-5.7 50% 25	CWT +54 73% 85	EMA +8.8 73% 23	Rib +2.4 72% 8	+2.6 73% 10	+0.2 65% 66	+4.9 76% 5	\$PRO \$163
EBVs Acc Perc	CEDir +6.6 67% 14	ril 2024 CEDtrs +0.8 58% 73	TransTas GL -6.3 83% 22	man Ang BW +1.9 82%	200 +37 83%	400 +65 82%	600 +97 82%	+61 80%	+28 76%	+1.5 80% 73	-5.7 50% 25	CWT +54 73% 85	EMA +8.8 73% 23	Rib +2.4 72% 8	+2.6 73% 10	+0.2 65% 66	+4.9 76% 5	\$PRO \$163 37
EBVs Acc Perc	CEDir +6.6 67% 14	ril 2024 CEDtrs +0.8 58%	TransTas GL -6.3 83% 22	man Ang BW +1.9 82%	200 +37 83%	400 +65 82%	600 +97 82%	+61 80%	+28 76%	+1.5 80% 73	-5.7 50% 25	CWT +54 73% 85	EMA +8.8 73% 23	Rib +2.4 72% 8	+2.6 73% 10	+0.2 65% 66	+4.9 76% 5	\$PRO \$163 37
EBVs Acc Perc	CEDir +6.6 67% 14 er	ril 2024 CEDtrs +0.8 58% 73	TransTas GL -6.3 83% 22	man Ang BW +1.9 82%	200 +37 83%	400 +65 82%	600 +97 82%	+61 80% 95	+28 76% 2	+1.5 80% 73	-5.7 50% 25 s Observ	CWT +54 73% 85	EMA +8.8 73% 23	Rib +2.4 72% 8	+2.6 73% 10	+0.2 65% 66	+4.9 76% 5	\$PRO \$163 37

Date of E	Birth: 07	/10/202	2		Regist	er: APR			Matir	ng Type:	Natural							AMF,CAF	,DDF,NHF
	SIRE:	NZE203	IYLEA K1 305018)N 1500	3107 LII	NTON 1	8107#					DAM:	NZE20	/LEA C51 305114 N 12495#	209 LI	NTON 1	4209#		HD	50K IV AINEUS
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattl	e Evaluat	tion											Selectio	on Index
Honstauman Anger Cartle Builluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+4.4	-0.8	-6.1	+2.4	+50	+94	+122	+105	+20	+2.7	-9.2	+63	+1.9	+4.8	+1.6	-0.5	+3.8	¢000	A+
Acc	63%	55%	80%	80%	81%	79%	79%	77%	72%	77%	45%	69%	69%	69%	70%	62%	74%	\$203	
Perc	31	84	24	18	56	45	43	45	25	29	1	62	92	1	19	92	16	8	

Traits Observed: BWT,200WT,400WT(x2),SC,Scan(EMA,Rib,Rump,IMF),Genomics

Lot 1	6							l	.INTOI	N T108	B sn							INA22	2T108
Date of E	Birth: 07	/09/202	2		Registe	er: APR			Ma	ating Typ	e: Al							AMF,CAF	,DDF,NHF
	SIRE:	NORM7	YLEA G3 85 REN YLEA D6	INYLEA	M785 ^P	v					DAM:	NZE20	(LEA EDN) 1305115 N 13080 [;]	103 LII		5103#		HD	SOK tor ANGLIS
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selection	on Index
Transfasman Angur Cattle Evaluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+7.1	+3.3	-6.8	+3.8	+52	+100	+129	+79	+33	+2.0	-6.6	+75	+1.9	+1.7	+2.8	-0.8	+2.3	¢170	A+
Acc	70%	61%	84%	83%	85%	83%	83%	81%	78%	81%	53%	74%	74%	74%	75%	67%	78%	\$173	
Perc	11	49	17	45	46	28	28	83	1	54	12	28	92	15	9	97	47	28	

Traits Observed: BWT,200WT,400WT(x2),SC,Scan(EMA,Rib,Rump,IMF),Genomics

25% 40%

Lot 1	7							l	.INTOI	N T357	7 ^{pv}							INA22	2T357
Date of E	Birth: 27	/09/202	2		Registe	er: APR			Matir	ng Type:	Natural							AMF,CAF	,DDF,NHF
	SIRE:	NZE203	YLEA M 305020 N 13589)223 LI	NTON 2	20223 ⁵¹	I				DAM:	NZE20	N 17175# 1 30511 9 N 17538#	9505 LI	NTON 1	9505#		HD	50K Arr Angus
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evalua	tion											Selectio	on Index
Transfasman Angur Cartle Dullution	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+3.5	+5.1	-7.1	+2.7	+41	+78	+100	+82	+19	+1.4	-4.1	+47	+8.0	+0.6	+1.2	+0.4	+4.9	¢100	A+
Acc	62%	52%	81%	81%	82%	80%	80%	78%	73%	78%	41%	69%	69%	68%	70%	59%	74%	\$160	
Perc	39	28	14	22	89	87	86	80	37	76	62	94	30	32	24	54	5	41	
										Trait	s Observ	/ed: BW	T,200W	,400WT	(x2),SC,S	Scan(EM/	A,Rib,Run	ip,IMF),Ge	nomics
Purchase	er													\$					

Lot 18						L	INTO	N T22	7 ^{pv}							INA22	2 T22 7
Date of Birth: 09/0	9/2022		Registe	er: APR			Ma	ating Typ	e: Al							AMF,CAF	,DDC,NHF
SIRE: NO	RENNYLEA ORQ1349 F RENNYLEA	ENNYLE	a Q134	9 ^{pv}					DAM:	NZE20	(LEA J178 1 305118 1 15571#	3268 LI	NTON 1	8268#		HD	SOK <i>tar ANGUS</i>
TACE Mid April	2024 TransT	asman An	gus Cattle	e Evaluat	tion											Selecti	on Index
Territoria forer Cetter balaction	EDtrs GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs +7.6 +	+0.6 -3.5	+1.2	+40	+84	+99	+72	+19	+3.1	-6.5	+59	+6.1	+0.8	+0.7	+0.2	+4.8	¢106	A+
Acc 67% 5	58% 83%	83%	84%	83%	83%	80%	76%	81%	46%	73%	73%	72%	73%	64%	77%	\$186	
Perc 8	75 65	6	91	74	88	90	36	19	13	74	53	29	31	66	6	17	

Traits Observed: BWT,200WT,400WT,SC,Scan(EMA,Rib,Rump,IMF),Genomics

Lot 1	9							l	INTO	N T14 [.]	lsv							INA22	2T141
Date of E	Birth: 08	3/09/202	22		Registe	er: APR			Ma	ating Typ	e: Al							AMF,CAF	,DDF,NH
	SIRE:	NORN6				ΡV					DAM:	NZE20	(LEA F26) 305115 N 12402 [;]	071 LII	NTON 1	5071#			
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selectio	on Index
Transfasman Anger Cartie Bualuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	_
EBVs	+5.9	+1.7	-5.2	+4.7	+48	+91	+116	+107	+22	+2.2	-7.6	+63	+2.8	+1.5	+1.0	+0.5	+1.2	Ċ1C A	Α
Acc	67%	59%	83%	82%	84%	82%	82%	80%	76%	80%	50%	73%	72%	72%	73%	64%	76%	\$164	
Perc	18	66	37	66	65	54	58	41	14	47	5	64	87	17	27	47	77	37	

Observed: BWT,200WT,400WT,Structure(Claw Set x 1, Foot Angle x 1),Genomics

Ş.....

<u>\$</u>.....

Purchaser.....

Purchaser.....

Lot 20 LINTON T185^{sv} **INA22T185** Date of Birth: 05/09/2022 AMF,CAF,DDF,NHF Register: APR Mating Type: Natural LINTON 11007# LINTON 18214# DAM: NZE20305113405 LINTON 13405# HD 50K SIRE: NZE20305020237 LINTON 20237^{SV} LINTON 101[#] LINTON 17106[#] TACE Mid April 2024 TransTasman Angus Cattle Evaluation Selection Index CEDir MCW \$PRO CEDtrs GL BW 200 400 600 Milk SS DTC CWT EMA Rib P8 RBY IMF EBVs +2.1 -1.9 +3.3 -6.3 +1.3 +0.5 +5.4 -3.1 +46 +82 +106 +71 +14 +2.3 +8.5 +0.8 +63 \$209 Асс 52% 62% 81% 81% 82% 80% 80% 77% 73% 77% 41% 69% 68% 68% 70% 60% 73% Perc 52 89 71 34 72 80 77 90 71 43 15 30 47 3 63 25 20 6 Traits Observed: BWT,200WT,400WT(x2),SC,Scan(EMA,Rib,Rump,IMF),Genomics

.....

Sale Bulls

Lot 2	21							l	.INTOI	N T216	5 ^{pv}							INA22T21
Date of	Birth: 07	/09/202			Regist	er: APR			Matii	ng Type:	Natural							AMF,CAF,DDF,1
	SIRE:	NZE203	IYLEA G4 805018 DN 1608	3214 LII	NTON 1	8214#					DAM:	NZE20	N 15009) 30511 7 N 14399	7578 LII	NTON 1	7578#		
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evalua	tion										1	Selection Inde
Transfasman Angur Cattle Evaluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PR0
EBVs	+4.7	+4.7	-6.1	+2.4	+40	+81	+100	+80	+21	+1.8	-6.7	+63	+8.5	+1.1	+1.9	+0.9	+1.9	\$172
Acc Perc	63% 28	54% 33	82% 24	82% 18	83% 91	81% 81	82% 87	79% 82	74% 18	79% 62	44% 11	71% 64	71% 25	70% 23	71%	62%	74% 58	29
										Trait	s Observ	/ed: BW	T,200W	,400WT	(x2),SC,	Scan(EM	A,Rib,Rur	mp,IMF),Genomi
Purchas	er													\$				
Lot 2	22							L	INTO	N TO2	5 ^{pv}							INA22T02
Date of	Birth: 27	/08/202	2		Regist	er: APR			Ma	ating Typ	e: Al							AMF,CAC,DDF,1
				LITY 839		.,						LINTO	N 18341 [#]					
	SIRE:	NORM7	'63 Ren Iylea J8		M763 [₽]	V					DAM:	NZE20) 30512 ∖ 18178⁴	0623 L	INTON	20623 [,]	JV.	
TACE	Mid Ap	oril 2024			aus Cattle	e Evalua	tion					LINIO	10170					Selection Inde
Transfageren Angur	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PR0
EBVs	+6.2	+3.5	-8.4	+3.1	+45	+87	+107	+122	+7	+0.8	-6.2	+57	+4.7	+2.0	+1.6	+0.4	+3.8	
Acc	66%	59%	83%	83%	84%	82%	82%	80%	76%	80%	49%	72%	72%	72%	73%	64%	76%	\$187
Perc	16	46	6	30	76	65	76	20	98	90	17	79	70	11	19	54	16	
										Iralt	s udserv	lea: BM	1,200W	1,400W1	(X2),SC,	Scan(EM)	a,rid,ruf	mp,IMF),Genomi
Durchas	or													¢				
ruitias	CI													ب				
	.										וחד							
Lot 2					.	4.55		L		N T337								INA22T33
Date of	Birth: 23	09/202		1005	Regist	er: APR			Matii	ng Type:	Natural							AMF,CAF,DDF,N
	SIRE:	NZE20	IYLEA G4 305019)N 0902	9263 LI	NTON 1	9263 ^{sv}					DAM:	NZE20	/LEA G42) 30511 9 N 16332 [#]	9030 LI	NTON 1	19030#		
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evalua	tion											Selection Inde
Transfasman Annue Cattle Bualuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PR0
EBVs	+6.8	+6.2	-8.7	+3.5	+45	+97	+139	+133	+24	+3.0	-6.8	+66	+9.0	+3.7	+2.3	+0.2	+2.6	\$185 A
Acc	67%	58%	83%	82%	84%	82%	82%	80%	76%	80%	48%	72%	71%	71%	72%	63%	76%	

12 66 Traits Observed: BWT,200WT,400WT,Genomics

\$.....

39

17

13

18

5

38

Perc

79

36 14

12

9

Purchaser.....

10 55

21

2

21

Lot 2	24							l	.INTOI	N T129) PV							INA22	2T129
Date of E	Birth: 07	//09/202	2		Regist	er: APR			Ma	ating Typ	e: Al							AMF,CAF	,DDF,NHF
	SIRE:	NORQ1	IYLEA M 349 RE IYLEA N	NNYLE	a Q134	.9 ^{pv}					DAM:	NZE2C	N 18243 [#] 1 30512(N 18109 [#])452 L	INTON 2	20452 ^p	V	HD	50K for Aligues
TACE	Mid Ap	oril 2024	TransTas	man Ang	gus Cattle	e Evalua	tion											Selectio	on Index
Transfasman Angur Cattle Evaluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+6.1	+0.4	-5.0	+0.3	+43	+90	+110	+75	+23	+2.6	-4.7	+55	+7.0	+0.3	+0.5	-0.4	+7.1	¢106	A+
Acc	64%	55%	82%	82%	83%	81%	81%	79%	74%	79%	42%	70%	70%	70%	71%	61%	74%	\$186	
Perc	17	76	40	3	84	58	70	87	10	33	47	83	41	39	34	90	1	17	
										Trait	s Observ	/ed: BW	.200W1	.400WT	(x2).SC.S	Scan(FMA	.Rib.Rur	np.IMF).Ge	nomics

Traits Observed: BWT,200WT,400WT(x2),SC,Scan(EMA,Rib,Rump,IMF),Genomics

\$.....

Purchaser.....

www.mountlinton.co.nz

.....

Lot	25							l	.INTO	N T45 [•]	1 ^{sv}							INA22	2 T 451
Date of	Birth: 01	/10/202	2		Registe	er: APR			Matir	ng Type:	Natural							AMF,CAF	,DDF,NHF
			YLEA G4											1UND E1					
	SIRE:	NZE203			NTON 1	8214#					DAM:				NTON 1	5011#		HD	50K
TACE	Mid An)N 1608 TransTac		nuc Cattle	o Evoluo	lion					LINIO	V 14588'	r				Colocti	on Index
	CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DTC CWT EMA Rib P8 RBY IMF \$P																on muex		
Bransflasman Angur Cattle Builluation	CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DTC CWT EMA Rib P8 RBY IMF \$1 FBVs ±85 ±40 -46 ±14 ±38 ±78 ±105 ±79 ±22 ±07 -71 ±70 ±29 ±29 ±02 ±24															\$PRO	. .		
EBVs Acc	BVs +8.5 +4.0 -4.6 +1.4 +38 +78 +105 +79 +22 +0.7 -7.1 +70 +2.9 +2.9 -0.2 +2.4															\$163	A +		
Perc	<u>66%</u>	57% 41	82% 47	82% 8	83% 94	81% 86	81% 80	79% 83	74% 18	79% 92	48% 7	71% 42	71% 87	71% 5	72%	64% 84	75% 44	37	
1.00		- 11	-11	0	51	00	00	05	10		s Ahsen		•••			•••		np,IMF),Ge	nomics
										nun	5 00501	cu. Dw	1,200 1	,40000	(//2/,JC,-		(,IXID,IXUI	np,n n /,u	
Dala a a														ć					
Purchas	er													\$					
Purchas	er													\$					
Purchas	-							L	.INTOI	N T254	1 sv			\$				INA22	2T254
Lot	26	/09/2022	2		Registe	er: APR		L		N T254 ating Typ				Ş					2 T254 ,DDF,NHF
Lot	2 6 Birth: 11,	RENN	YLEA GE					L			e: Al			\$ RY VIII D					
Lot	2 6 Birth: 11,	RENN	YLEA GE 85 REN	INYLEA				L			e: Al	NZE20	305114	226 LI	1054 ^{pv} NTON 1	4226#		AMF,CAF	
Lot 2 Date of	2 6 Birth: 11, SIRE:	RENN NORM7 RENN	YLEA G3 85 REN YLEA D6	NYLEA	M785 ^p	V		L			e: Al	NZE20		226 LI		4226#		AMF,CAF	,DDF,NHF
Lot	2 6 Birth: 11, SIRE:	RENN	YLEA G3 85 REN YLEA D6	NYLEA	M785 ^p	V	tion	L			e: Al	NZE20	305114	226 LI		4226#		AMF,CAF	,DDF,NHF
Lot 2 Date of	2 6 Birth: 11, SIRE:	RENN NORM7 RENN	YLEA G3 85 REN YLEA D6	NYLEA	M785 ^p	V	tion 600	L			e: Al	NZE20	305114	226 LI		4226# RBY	IMF	AMF,CAF	,DDF,NHF
Lot 2 Date of	2 6 Birth: 11, SIRE: Mid Ap	RENN NORM7 RENN ril 2024	YLEA GE 85 REN YLEA DE TransTas	INYLEA 533 ^{sv} man Ang	M785 ^p gus Cattle	e Evalua			Ma	ating Typ	e: Al DAM:	NZE20 LINTON	3 0511 4 09704	226 LI	NTON 1		IMF +1.5	AMF,CAF	CODF,NHF
Lot 2 Date of TACE EBVs Acc	26 Birth: 11, SIRE: Mid Ap CEDir -4.8 67%	RENN NORM7 RENN ril 2024 CEDtrs +3.2 58%	YLEA G3 85 REN YLEA D6 TransTas GL -2.9 82%	NYLEA 533 ^{sv} man Ang BW +4.8 82%	M785 ^p gus Cattle 200 +53 83%	v E Evalua 400 +90 81%	600 +120 82%	MCW +102 79%	Ma Milk +15 76%	ss +0.8 79%	e: AI DAM: DTC -5.2 49%	NZE20 LINTON CWT +64 72%	305114 09704 EMA +6.3 72%	Rib +0.7 71%	P8 +2.1 73%	RBY +0.0 65%	+1.5 75%	AMF,CAF Selection \$PRO \$138	DDF,NHF
Lot 2 Date of TACE	26 Birth: 11, SIRE: Mid Ap CEDir -4.8	RENN NORM7 RENN ril 2024 CEDtrs +3.2	YLEA G3 85 REN YLEA D6 TransTas GL -2.9	INYLEA 533 ^{sv} man Ang BW +4.8	M785 ^p gus Cattle 200 +53	v e Evalua 400 +90	600 +120	MCW +102	Ma Milk +15	ss +0.8 79% 90	e: Al DAM: DTC -5.2 49% 35	NZE20 LINTON CWT +64 72% 61	305114 09704 EMA +6.3 72% 50	Rib +0.7 71% 30	P8 +2.1 73% 14	RBY +0.0 65% 76	+1.5 75% 69	AMF,CAF	on Index

Ś....

Ś....

<u>\$</u>_____

Lot 2	27							L	INTON	N TO3	8 ^{pv}							INA22	T038
Date of E	3irth: 01	/09/202	2		Registe	er: APR			Ma	ating Typ	e: Al							AMF,CAF	,DDF,NHF
_	SIRE:	NORQ1	IYLEA M 349 RE IYLEA N	NNYLE	a Q134	9 ^{pv}					DAM:	NZE20	′LEA N64 30512(N 18662 [#]	0055 L	INTON 2	20055 [°]	V	HD	50K Kar ANISUS
TACE	Mid Ap	oril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selectio	on Index
Transfasman Angur Cattle Builuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	_
EBVs	+2.9	-2.4	-5.7	+3.4	+47	+90	+111	+95	+18	+3.5	-8.8	+60	+3.6	+3.0	+2.7	-0.7	+4.8	¢000	A+
Acc	64%	54%	82%	82%	83%	81%	81%	78%	74%	79%	42%	70%	70%	69%	71%	61%	74%	\$202	
Perc	45	91	30	36	69	56	68	62	40	12	1	71	81	5	9	96	6	8	
										Trait	s Observ	/ed: BW	r,200W1	,400WT	(x2),SC,S	Scan(EM/	A,Rib,Rur	mp,IMF),Ge	enomics

Purchaser.....

Purchaser.....

Purchaser.....

Lot 28 LINTON T579PV INA22T579 Date of Birth: 21/10/2022 AMF,CAF,DDF,NHF Register: APR Mating Type: Natural RENNYLEA K163PV LINTON 15163# (HD 50K SIRE: NZE20305018107 LINTON 18107# DAM: NZE20305118599 LINTON 18599# LINTON 14364# LINTON 15004# TACE Mid April 2024 TransTasman Angus Cattle Evaluation Selection Index CEDir MCW \$PRO CEDtrs GL BW 200 400 600 Milk SS DTC CWT EMA Rib P8 RBY IMF EBVs +3.8 +4.3 +46 +91 +89 +12 -6.1 +73 +9.6 +1.4 -1.7 -4.3 +111 +1.4 +1.1 +0.1 +1.4 \$183 Асс 81% 75% 65% 56% 81% 82% 80% 81% 78% 74% 78% 44% 71% 70% 70% 71% 62% Perc 36 88 52 57 71 54 69 70 87 76 18 33 17 23 41 72 7 19 Traits Observed: BWT,200WT,400WT(x2),SC,Scan(EMA,Rib,Rump,IMF),Genomics

Sale Bulls

Lot	29							I	.INTO	N T12 ⁻	PV							INA2	2T121
Date of	Birth: 05	5/09/202	22		Registe	er: APR			Ma	ating Typ	e: Al							AMFU,CA	F,DDF,NHF
		NORQ1. RENN		NNYLE 703 ^{pv}							DAM:	NZE20	'LEA N64 30512 N 16113#		NTON 2	20322 ^s	V		SOK Kor ANGUS
TACE	CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DTC CWT EMA Rib P8 RBY IMF /s -1.8 -4.8 -2.3 +4.9 +49 +96 +119 +108 +20 +3.3 -7.4 +62 +5.8 -1.1 -2.4 +0.1 +5.6															Selecti	ion Index		
Inside the second secon	CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DTC CWT EMA Rib P8 RBY IMF Vs -1.8 -4.8 -2.3 +4.9 +96 +119 +108 +20 +3.3 -7.4 +62 +5.8 -1.1 -2.4 +0.1 +5.6															\$PRO			
EBVs	BVs -1.8 -4.8 -2.3 +4.9 +96 +119 +108 +20 +3.3 -7.4 +62 +5.8 -1.1 -2.4 +0.1 +5.6															¢170	A+		
Acc	EBVs -1.8 -4.8 -2.3 +4.9 +49 +96 +119 +108 +20 +3.3 -7.4 +62 +5.8 -1.1 -2.4 +0.1 Acc 65% 56% 83% 84% 82% 82% 79% 75% 80% 43% 71% 71% 70% 71% 62%																		
Perc	80	96	81	/0	58	38	50	- 39	26		-								
Purchas	CC 65% 56% 83% 84% 82% 79% 75% 80% 43% 71% 70% 71% 62% 75% \$170																		
Lot 3	30							L	.INTO	N T130				+				INA2	2T136
	ot 30 LINTON T136 ^{sv} II																2T136 F,DDF,NHF		
Date of	Birth: 08 SIRE:	RENN NORN6 RENN	IYLEA EC 40 REN IYLEA L8	NNYLEA 881 ^{sv}	11 ^{pv} N640 ¹	PV		l			<mark>5^{sv}</mark> e: Al		12090 12091		NTON 1	4534#		AMF,CAI	
	Birth: 08 SIRE:	RENN	IYLEA EC 40 REN IYLEA L8	NNYLEA 881 ^{sv}	11 ^{pv} N640 ¹	PV	tion	l			<mark>5^{sv}</mark> e: Al	LINTO NZE2C	12090 12091		NTON 1	4534#		AMF,CA	F,DDF,NHF
Date of	Birth: 08 SIRE:	RENN NORN6 RENN	IYLEA EC 40 REN IYLEA L8	NNYLEA 881 ^{sv}	11 ^{pv} N640 ¹	PV	tion 600	L			<mark>5^{sv}</mark> e: Al	LINTO NZE2C	12090 12091		NTON 1 P8	4534# RBY	IMF	AMF,CA	F,DDF,NHF
Date of TACE EBVs	Birth: 08 SIRE: Mid Ap CEDir +9.1	RENN NORN6 RENN oril 2024 CEDtrs +1.5	IYLEA EE 40 REN IYLEA L8 TransTas GL -3.7	NYLEA 881 ^{sv} man Ang BW +3.6	11 ^{PV} N640 ^I gus Cattle 200 +43	e Evalua 400 +85	600 +104	MCW +108	Milk +18	ss +2.7	5sv e: Al DAM: DTC -7.3	LINTO NZE2C LINTO CWT +57	N 12090 305114 N 116# EMA +3.0	Rib +0.2	P8 -0.7	RBY +0.8	+2.6	AMF,CAI	F,DDF,NHF
Date of TACE EBVs Acc	Birth: 08 SIRE: Mid Ap CEDir +9.1 66%	RENN NORN6 RENN oril 2024 CEDtrs +1.5 57%	IYLEA EE 40 REN IYLEA L8 TransTas GL -3.7 83%	NYLEA 881 ^{sv} man An <u>c</u> BW +3.6 82%	11 ^{PV} N640 gus Cattle 200 +43 83%	e Evaluat 400 +85 82%	600 +104 82%	MCW +108 79%	Milk +18 75%	ss +2.7 79%	5sv e: Al DAM: DTC -7.3 47%	LINTOI NZE2C LINTOI CWT +57 72%	N 12090 305114 N 116 [#] EMA +3.0 71%	Rib +0.2 71%	P8 -0.7 72%	RBY +0.8 64%	+2.6 75%	AMF,CAI	F,DDF,NHF
Date of TACE EBVs	Birth: 08 SIRE: Mid Ap CEDir +9.1	RENN NORN6 RENN oril 2024 CEDtrs +1.5	IYLEA EE 40 REN IYLEA L8 TransTas GL -3.7	NYLEA 881 ^{sv} man Ang BW +3.6	11 ^{PV} N640 ^I gus Cattle 200 +43	e Evalua 400 +85	600 +104	MCW +108	Milk +18	SS +2.7 79% 29	55V e: Al DAM: DTC -7.3 47% 6	LINTOI NZE2C LINTOI CWT +57 72% 80	N 12090 305114 116# EMA +3.0 71% 86	Rib +0.2 71% 41	P8 -0.7 72% 56	RBY +0.8 64% 29	+2.6 75% 39	AMF,CAI	F,DDF,NHF

Lot 3	81							l	.INTO	N T575	5 ^{PV}							INA22	2 T575
Date of E	Birth: 21	/10/202	2		Regist	er: APR			Matii	ng Type:	Natural							AMF,CAF	DDF,NHF
	SIRE:	NZE203	IYLEA G4 305019)N 13553	085 LI	NTON 1	9085 ^{sv}	I				DAM:	NZE2C	N 16074 [#]) 305119 N 17058 [#]	556 LI	NTON 1	9556#		HD	SOK Re ANGLE
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattl	e Evaluat	tion											Selectio	n Index
Transfasman Angue Castle Bualuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	-3.1	+3.2	-8.2	+6.6	+64	+110	+142	+123	+19	+4.5	-7.8	+95	+10.0	+0.0	+0.6	+0.6	+2.1	Ć012	Α
Acc	62%	53%	80%	81%	82%	79%	80%	77%	72%	77%	42%	68%	68%	68%	69%	59%	73%	\$213	
Perc	86	50	7	93	6	9	11	20	31	3	4	3	14	46	33	41	52	5	
											Tr	aits Obse	erved: BV	VT,200V	VT,400V	VT(x2),SC	,Scan(EN	1A,IMF),Ge	nomics

Purchaser.....

....\$......

Lot 32 LINTON T464^{PV} **INA22T464** Date of Birth: 01/10/2022 AMF,CAF,DDF,NHF Register: APR Mating Type: Natural LINTON 18315# LINTON 18214# (HD 50K SIRE: NZE20305020472 LINTON 20472^{SV} DAM: NZE20305120346 LINTON 20346^{sv} LINTON 17323# LINTON 17246# TACE Mid April 2024 TransTasman Angus Cattle Evaluation Selection Index \$PRO CEDir CEDtrs MCW GL BW 200 400 600 Milk SS DTC CWT EMA Rib P8 RBY IMF EBVs -2.8 +51 +121 +92 +22 -7.3 +5.6 -1.4 -1.0 +7.3 +87 +3.8 +64 +17.2 -0.3 -1.1 +1.4 \$218 Асс 54% 63% 82% 82% 83% 81% 81% 79% 74% 79% 42% 70% 70% 69% 71% 61% 75% Perc 85 87 92 97 51 45 15 60 53 7 2 64 66 8 6 63 1 4

Traits Observed: BWT,200WT,400WT(x2),SC,Scan(EMA,Rib,Rump,IMF),Genomics

.....

Ś

Purchaser.....

25% 40%

Lot 3	33							l	INTO	N T214	1 ^{pv}							INA22T2	214
		/09/202	2		Registe	er: APR				ating Typ								AMF,CAF,DDI	
		NORM7 RENN	IYLEA D6	INYLEA							DAM:	NZE20	'LEA K16 305116 N 13574#	052 LI	NTON 1	6052 ^{sv}	I		K
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion	1		1						1	1	Selection Inc	dex
transfasman Angur Cattle Bualuation	CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DTC CWT EMA Rib P8 RBY IMF V/s +4.8 +6.2 -3.7 +3.2 +34 +61 +78 +39 +22 +0.3 -4.1 +41 +14.2 +1.4 +2.3 +1.0 +3.9															\$PRO	_		
EBVs	Ws +4.8 +6.2 -3.7 +3.2 +34 +61 +78 +39 +22 +0.3 -4.1 +41 +14.2 +1.4 +2.3 +1.0 +3.9															\$159	(+		
Acc	67%	57%	82%	82%	83%	81%	82%	80%	76%	79%	49%	72%	72%	72%	73%	65%	76%		
Perc	27	18	62	32	98	99	99	99	14	96	62	98	2	18		20	15	<u>42</u> mp,IMF),Genon	
Purchase	er													\$					
Lot 3	34								.INTOI	N T063	3 ^{pv}			\$				INA22T0	
Lot 3																INA22TO Amf,Caf,DDI			
Lot 3	34 Birth: 31	/08/202 Renn Norq1:	2 Iylea Mi	763 ^{pv}	Registe	er: APR			.INTOI	N T063	3^{pv} e: Al	LINTOP NZE20	N 16180 [#] 1305119 N 13366 [#]	115 LIN	NTON 19	9115 ^{sv}			F,NHI
Lot 3	34 Birth: 31 SIRE:	/08/202 Renn Norq1:	2 IYLEA M 349 RE IYLEA N7	763 ^{pv} NNYLE 703 ^{pv}	Registe A Q134	er: APR 9 ^{pv}			.INTOI	N T063	3^{pv} e: Al	LINTOP NZE20	16180# 1 30511 9	115 LIN	ITON 19	9115 ^{sv}		AMF,CAF,DDI	F,NHI
Lot 3 Date of I	34 Birth: 31 SIRE:	/08/202 RENN NORQ1 RENN	2 IYLEA M 349 RE IYLEA N7	763 ^{pv} NNYLE 703 ^{pv}	Registe A Q134	er: APR 9 ^{pv}			.INTOI	N T063	3^{pv} e: Al	LINTOP NZE20	16180# 1 30511 9	115 LIN	NTON 19	9115 ^{sv} RBY	IMF		F,NH
Lot 3 Date of I	3 4 Birth: 31 SIRE: Mid Ap	/08/202 RENN NORQ1 RENN ril 2024	2 IYLEA M 349 RE IYLEA N7 TransTas	763 ^{pv} NNYLE 703 ^{pv} man Ang	Registe A Q134 gus Cattle	er: APR 9 ^{pv} e Evaluat	tion	L	. INTOI Ma	N TOG	3 ^{pv} e: Al DAM:	Lintor NZE20 Lintor	N 16180# 1 305119 N 13366#)115 LIN			IMF +2.9	AMF,CAF,DDI	F,NH
Lot 3 Date of I TACE EBVs Acc	34 Birth: 31 SIRE: Mid Ap CEDir +3.8 62%	/08/202 RENN NORQ1 RENN ril 2024 CEDtrs +2.7 52%	2 IYLEA M7 349 RE IYLEA N7 TransTas GL -4.8 82%	763 ^{PV} NNYLE 703 ^{PV} man Ang BW +1.7 81%	Registe A Q134 gus Cattle 200 +41 82%	er: APR 9 ^{pv} e Evaluat 400 +85 81%	tion 600 +94 81%	MCW +76 77%	INTOI Mi Milk +17 73%	N TO6. ating Typ SS +2.7 78%	3 ^{pv} ne: Al DAM: DTC -4.8 41%	LINTOP NZE2C LINTOP CWT +42 69%	N 16180 [#] 305119 N 13366 [#] EMA +4.6 69%	Rib +1.4 68%	P8 +0.5 69%	RBY +0.0 60%	+2.9 73%	AMF,CAF,DDI Selection Ind \$PRO \$136	F,NHI
Lot 3 Date of I TACE	34 Birth: 31 SIRE: Mid Ap CEDir +3.8	/08/202 RENN NORQ1 RENN ril 2024 CEDtrs +2.7	2 IYLEA M 3 49 RE IYLEA N7 TransTas GL -4.8	763 ^{PV} NNYLE 703 ^{PV} man Ang BW +1.7	Registe A Q134 gus Cattle 200 +41	er: APR 9 ^{pv} e Evaluat 400 +85	tion 600 +94	<u>МС₩</u> +76	INTOI M Milk +17	N TO6. ating Typ SS +2.7 78% 29	3 ^{PV} le: Al DAM: DTC -4.8 41% 45	LINTOI NZE2C LINTOI CWT +42 69% 97	N 16180 [#] 305119 N 13366 [#] EMA +4.6 69% 71	Rib +1.4 68% 18	P8 +0.5 69% 34	RBY +0.0 60% 76	+2.9 73% 32	AMF,CAF,DDI Selection Inc \$PR0 \$136 66	F,NHI dex
Lot 3 Date of I TACE EBVs Acc	34 Birth: 31 SIRE: Mid Ap CEDir +3.8 62%	/08/202 RENN NORQ1 RENN ril 2024 CEDtrs +2.7 52%	2 IYLEA M7 349 RE IYLEA N7 TransTas GL -4.8 82%	763 ^{PV} NNYLE 703 ^{PV} man Ang BW +1.7 81%	Registe A Q134 gus Cattle 200 +41 82%	er: APR 9 ^{pv} e Evaluat 400 +85 81%	tion 600 +94 81%	MCW +76 77%	INTOI Mi Milk +17 73%	N TO6. ating Typ SS +2.7 78% 29	3 ^{PV} le: Al DAM: DTC -4.8 41% 45	LINTOI NZE2C LINTOI CWT +42 69% 97	N 16180 [#] 305119 N 13366 [#] EMA +4.6 69% 71	Rib +1.4 68% 18	P8 +0.5 69% 34	RBY +0.0 60% 76	+2.9 73% 32	AMF,CAF,DDI Selection Ind \$PRO \$136	F,NHI dex

Lot 3	5							l	.INTOI	N T152	2 ^{pv}							INA22	T152
Date of I	Birth: 06	5/09/202	22		Registe	er: APR			Ma	ating Typ	e: Al							AMF,CAF	DDF,NHF
	SIRE:	NORM7	IYLEA GE 85 REN IYLEA DE	INYLEA	M785 ^p	V					DAM:	NZE20	(LEA EDM) 305116 N 14054 [#]	6007 LI	-	6007 ^{sv}	,	HD	SOK RV ANGUS
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selectio	n Index
TransTasman Anger Cattle bullution	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+5.4	+2.9	-3.2	+2.3	+33	+61	+84	+49	+28	+1.2	-3.8	+36	+10.0	+2.0	+2.3	+0.1	+4.7	¢107	Α
Acc	69%	62%	83%	83%	84%	82%	83%	81%	77%	80%	53%	74%	73%	73%	74%	66%	77%	\$127	_
Perc	22	53	69	17	99	99	97	98	2	82	69	99	14	11	12	71	6	74	
										Trait	s Observ	/ed: BW	T,200WT	,400WT	(x2),SC,S	can(EM/	A,Rib,Rur	np,IMF),Ge	nomics

\$.....

Lot 3	86							L	INTON	N T289	9 ^{pv}							INA22	T289
Date of E	Birth: 19	/09/202	2		Registe	er: APR			Matir	ng Type:	Natural							AMF,CAF	DDF,NHF
	LINTON 18214 [#] SIRE: NZE20305020062 LINTON 20062 ^{PV} LINTON 18242 [#] LINTON 1824 [#] LI													HD	SOK ter ANGUS				
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selectio	n Index
Transfasmen Angur Cartie Pulluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+9.9	+6.8	-8.0	+2.3	+43	+74	+102	+66	+24	+1.8	-6.1	+66	+10.2	+5.5	+8.3	-0.1	+1.9	¢107	A
Acc	61%	51%	81%	80%	81%	79%	80%	77%	72%	77%	40%	68%	67%	67%	68%	58%	73%	\$197	—
Perc	2	13	8	17	83	92	84	93	8	62	18	54	13	1	1	81	58	10	
											Traits	Observe	d: BWT,2	.00WT,4	00WT(x	2),SC,Sca	an(EMA,I	Rib,IMF),Ge	nomics

Purchaser.....

Sale Bulls

Lot 3	27							1	INTO	N T120	JPV							INA22T120
		5/09/202))		Registe	or ΔDD		L		ating Typ								AMF.CAF.DDF.NH
	Jirtin. U.			LITY 839	-				1.10	ung typ	ic. Al		'LEA G42	NU SN				
	SIRE:	NORM7		INYLEA		V					DAM:	NZE20	30512(15605#	0301 LI	NTON 2	20301 ^{sv}	I	
TACE	Mid An	oril 2024			nuc Cattle	n Evaluat	ion					LINTU	10000					Selection Index
TACE																		
Torofasman Angur Cattle Bualuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PR0
EBVs	+5.8	+1.7	-5.6	+3.2	+44	+87	+110	+73	+17	+2.5	-4.7	+63	+10.6	+2.0	+2.3	+0.5	+4.4	\$200 A
Acc	67%	59%	83%	82%	83%	82%	82%	80%	76%	80%	49%	72%	72%	71%	72%	64%	76%	
Perc	19	66	31	32	79	65	69	88	51	36	47	62	11	11	12	47	9	9
Purchase	er													\$			4, KID, KUI	mp,IMF),Genomics
Purchase														\$			4,KID,KUI	INA22T003
Lot 3	88	5/08/202			Registe				.INTO		3 ^{pv}			\$			4,KID,KUI	
Lot 3	3 8 Birth: 26	5/08/202 Mata	22 JURI REA	LITY 839	Registe	er: APR			.INTO	N TOO3	3 ^{pv}			Ş			4,KID,KUI	INA22T003
Lot 3	3 8 Birth: 26	5/08/202 Mata Norm7	22 JURI REA	LITY 839	Registe	er: APR			.INTO	N TOO3	<mark>3^{PV}</mark> be: Al	RENNY		\$ 20 ^{sv}				INA22T003
Lot 3	38 Birth: 26 SIRE:	5/08/202 Mata Norm7	22 .URI REA 163 REN IYLEA J8	LITY 839 INYLEA 33 ^{9V}	Registe)# M763 ^p	er: APR v			.INTO	N TOO3	<mark>3^{PV}</mark> be: Al	RENNY	'LEA G42 305119	\$ 20 ^{sv}				INA22T003 AMF,CAF,DDF,NH
Lot 3 Date of F	38 Birth: 26 SIRE:	5/08/202 Mata NORM7 RENN	22 .URI REA 163 REN IYLEA J8	LITY 839 INYLEA 33 ^{9V}	Registe)# M763 ^p	er: APR v			.INTO	N TOO3	<mark>3^{PV}</mark> be: Al	RENNY	'LEA G42 305119	\$ 20 ^{sv}				INA22TOO3 AMF,CAF,DDF,NH
Lot 3 Date of E	38 Birth: 26 SIRE: Mid Ap	5/08/202 Mata Norm7 Renn Dril 2024	22 URI REA 163 REN IYLEA J8 TransTas	LITY 839 INYLEA 33 ^{pv} man Ang	Registe [#] M763 ^p gus Cattle	er: APR v e Evaluat	ion	L	. INTOI Ma	1 TOO ating Typ	3 ^{pv} e: Al DAM:	RENNY NZE20 LINTOP	′LEA G42 30511 9 \ 15187 [#]	\$ 20 ^{sv} 149 Ll	NTON 1	9149 ^{sv}		INA22TOO3 AMF,CAF,DDF,NH Selection Index SPRO
Lot 3 Date of F	38 Birth: 26 SIRE: Mid Ap CEDir	5/08/202 MATA NORM7 RENN oril 2024 CEDtrs	22 URI REA 63 REN IYLEA J8 TransTas GL	LITY 839 INYLEA 133 ^{PV} man An <u>o</u> BW	Registe [#] M763 ^p gus Cattle 200	er: APR v e Evaluat 400	ion 600	L	INTON Ma	N TOO: ating Typ SS	3 ^{pv} He: Al DAM: DTC	RENNY NZE2C LINTOP	/LEA G42 305119 \ 15187# Ema	\$ 20 ^{sv} 149 Ll Rib	NTON 1 P8	9149 ^{sv} RBY	IMF	INA22TOO3 AMF,CAF,DDF,NH CECTON Index

Traits Observed: BWT,200WT,400WT(x2),SC,Scan(EMA,Rib,Rump,IMF),Genomics

Lot 3	39							L	.INTOI	N T169	9 ^{pv}							INA22	2T169
Date of E	Birth: 06	5/09/202	22		Regist	er: APR			Ma	ating Typ	e: Al							AMF,CAF	,DDF,NHF
	SIRE:	NORQ1	IYLEA M 349 Re IYLEA N	NNYLE	a Q134	.9 ^{pv}					DAM:	NZE20	'LEA M78 3 05119 N 15129#	9116 LIN	NTON 19	9116 ^{sv}		HD	50K Ker AINSUS
TACE	Mid Ap	oril 2024	TransTas	man Ang	gus Cattl	e Evalua	tion											Selectio	on Index
Transfasman Anger Cartle Buillation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+2.4	+1.0	-7.0	+2.0	+43	+84	+104	+99	+20	+3.8	-6.4	+58	+7.3	+0.5	+1.2	-0.3	+6.7	¢100	A+
Acc	65%	55%	82%	82%	83%	81%	82%	79%	74%	79%	44%	71%	71%	70%	71%	62%	75%	\$182	
Perc	49	72	15	13	84	74	80	54	24	8	14	77	38	34	24	87	1	20	
										Trait	s Observ	/ed: BW ⁻	r,200W1	,400WT	(x2),SC,S	Scan(EM/	A,Rib,Ru	np,IMF),Ge	enomics

Lot 40 LINTON T239^{PV} **INA22T239** Date of Birth: 11/09/2022 AMF,CAF,DDF,NHF **Register: APR** Mating Type: Natural **RENNYLEA EDMUND E11**PV LINTON 18214# HD SOK DAM: NZE20305116060 LINTON 16060^{sv} SIRE: NZE20305020237 LINTON 202375V LINTON 12059# LINTON 17106[#] TACE Mid April 2024 TransTasman Angus Cattle Evaluation Selection Index CEDir 200 \$PRO CEDtrs GL BW 400 600 MCW Milk SS DTC CWT EMA Rib P8 RBY IMF **EBV**s -5.8 -2.3 -6.5 +55 +102 +144 +124 +21 +5.0 -7.0 +73 +9.0 +0.7 +0.1 +7.9 -1.0 +4.3 \$173 Асс 82% 74% 75% 64% 56% 82% 83% 81% 81% 78% 78% 45% 70% 70% 70% 71% 61% Perc 94 90 20 99 31 23 9 19 23 2 33 21 71 10 28 8 30 61

Traits Observed: 200WT,400WT(x2),SC,Scan(EMA,Rib,Rump,IMF),Genomics

\$.....

Purchaser.....

www.mountlinton.co.nz

.....

25% 40%

Lot 4	11							1		N TO28	S bA							INA22	T028
		/08/202	2		Registe	er: APR				ating Typ									,DDF,NHI
	SIRE:	NORM7		LITY 839 INYLEA 33 ^{pv}		v					DAM:	NZE20	N 18203# 1 30512(N 17375#)473 LI	NTON 2	20473 ^s	V		SOK Arr ANGUS
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evalua	tion									1		Selecti	on Index
transfasman Angur Cattle Evaluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	_
EBVs	+3.7	+1.0	-6.8	+4.1	+52	+99	+128	+127	+12	+3.0	-5.5	+69	+10.9	+0.4	-0.3	+1.5	+2.0	Š191	
Acc Perc	65% 37	57% 72	82% 17	82% 52	83% 45	81% 30	82% 30	79% 16	75% 84	79% 21	46% 29	71% 45	71% 9	70% 37	71% 48	63% 6	75% 55	14	-
Perc	31	12	17	52	45	30	30	01	84				3					14 mp,IMF),Ge	nomics
Lot 4	-							L	INTOI	N T47() ^{pv}			Ş				INA22	2T470
Lot 4	42	/10/202	2		Registe	er: APR		L		N T47(ng Type:				Ş					2 T470 ,DDF,NHF
Lot 4	12 Birth: 05	/10/202 RENN NZE203	IYLEA M)080 L	-		SV	L			Natural	NZE20	N 16023 [#] 1 305119 N 15105 [#]		NTON 1	9535 ^{sv}		AMF,CAF	
Lot 4	12 Birth: 05 SIRE:	/10/202 RENN NZE203	IYLEA M 305020)N 17285	0080 L	INTON 2	20080		L			Natural	NZE20	305119		NTON 1	9535 ^{sv}		AMF,CAR	F,DDF,NHF
Lot 4 Date of	12 Birth: 05 SIRE:	/10/202 RENN NZE203 LINTC	IYLEA M 305020)N 17285	0080 L	INTON 2	20080		L			Natural	NZE20	305119		NTON 1 P8	9535 ^{sv} RBY	IMF	AMF,CAR	,DDF,NHF
Lot 4 Date of TACE	12 Birth: 05 SIRE: Mid Ap	/10/202 RENN NZE203 Linto ril 2024	IYLEA M 30502()N 17285 TransTas	0080 L 5# man Ang	INTON 2	20080 e Evalua	tion		Matin Milk +19	ng Type: SS +0.1	Natural DAM:	NZE2C	3 05119 N 15105 [#])535 LII			IMF +2.7	AMF,CAF	,DDF,NHF
Lot 4 Date of TACE EBVs Acc	12 Birth: 05 SIRE: Mid Ap CEDir -3.2 62%	/10/202 RENN NZE203 LINTC ril 2024 CEDtrs -0.1 53%	IYLEA M 305020 305 020 300 17285 TransTas GL -1.7 81%	0080 L man Ang BW +6.1 81%	INTON 2 gus Cattle 200 +51 82%	20080 e Evalua 400 +82 80%	tion 600 +113 80%	MCW +89 77%	Matin Milk +19 73%	ng Type: SS +0.1 78%	Natural DAM: DTC -5.0 41%	NZE2C LINTOR CWT +79 69%	305119 N 15105# EMA +7.4 69%	Rib -3.4 68%	P8 -5.4 70%	RBY +1.3 60%	+2.7 74%	AMF,CAF Selecti \$PRO \$122	C,DDF,NHF
Lot 4 Date of TACE	12 Birth: 05 SIRE: Mid Ap CEDir -3.2	/10/202 RENN NZE203 LINTC ril 2024 CEDtrs -0.1	IYLEA M 305020 305 020 300 17285 300 17285 3000 17285 3000 17285 3000 17285 300000000000000000000000000000	0080 L man Ang BW +6.1	INTON 2 gus Cattle 200 +51	20080 e Evalua 400 +82	tion 600 +113	MCW +89	Matin Milk +19	ng Type: SS +0.1 78% 97	Natural DAM: DTC -5.0 41% 40	NZE2C LINTOI CWT +79 69% 20	BO5119 15105# EMA +7.4 69% 37	Rib -3.4 68% 97	P8 -5.4 70% 99	RBY +1.3 60% 10	+2.7 74% 37	AMF,CAF	DDF,NHF
Lot 4 Date of TACE EBVs Acc Perc	12 Birth: 05 SIRE: Mid Ap CEDir -3.2 62% 86	/10/202 RENN NZE203 LINTC ril 2024 CEDtrs -0.1 53%	IYLEA M 30502(DN 17285 TransTas GL -1.7 81% 87	0080 L ^{5#} BW +6.1 81% 89	INTON 2 gus Cattle 200 +51 82% 51	20080 e Evalua 400 +82 80% 79	tion 600 +113 80% 64	MCW +89 77% 71	Matin Milk +19 73% 33	ng Type: SS +0.1 78% 97 Trait	Natural DAM: DTC -5.0 41% 40 s Observ	NZE2C LINTOI +79 69% 20 red: BW	305119 ↓ 15105# EMA +7.4 69% 37 T,200WT	Rib -3.4 68% 97	P8 -5.4 70% 99	RBY +1.3 60% 10	+2.7 74% 37	AMF,CAF Selecti \$PRO \$122	DDF,NHF

Lot 4	13							l	.INTOI	N T21	5 ^{PV}							INA22	2 T215
Date of I	Birth: 07	/09/202	2		Registe	er: APR			Ma	ating Typ	e: Al							AMF,CAF	,DDF,NHF
	SIRE:	NORM7				V					DAM:	NZE20	'LEA M78 305119 N 16036 [#]	221 LI	NTON 1	9221#		HD	50K ter AINSUS
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selecti	on Index
Toristasman Anger Cattle Builution	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+7.8	+8.0	-6.2	+0.8	+46	+99	+113	+84	+11	+1.0	-6.1	+55	+6.2	+3.8	+2.7	-0.5	+4.7	¢000	A+
Acc	68%	60%	83%	83%	84%	82%	83%	81%	77%	81%	50%	73%	73%	72%	73%	65%	77%	\$226	
Perc	7	6	23	4	73	31	64	78	89	86	18	82	51	2	9	92	6	2	
											Trait	s Observ	ed: BW1	,400WT	(x2),SC,S	Scan(EM/	A,Rib,Rur	np,IMF),Ge	enomics

Lot 44 LINTON T255 ^{PV}	INA22T255
Date of Birth: 09/09/2022 Register: APR Mating Type: Natural	AMF,CAF,DDF,NHF
RENNYLEA G420 ^{5V} SIRE: NZE20305018214 LINTON 18214 [#] LINTON 16081 [#] RENNYLEA EDMUND E11 ^{PV} DAM: NZE20305117279 LINTON 17279 ^{SV} LINTON 14066 [#]	
TACE Mid April 2024 TransTasman Angus Cattle Evaluation	Selection Index
CEDir CEDtrs GL BW 200 400 600 MCW Milk SS DTC CWT EMA Rib P8 RBY IMF	\$PR0
EBVs +8.6 +7.4 -6.1 +2.0 +34 +74 +87 +44 +19 +3.3 -9.9 +52 +7.1 +4.8 +6.3 -0.2 +2.1	
Acc 65% 56% 82% 82% 83% 81% 81% 79% 74% 79% 48% 71% 71% 71% 71% 63% 75%	\$232
Perc 4 10 24 13 98 92 96 99 31 15 1 88 40 1 1 84 32	2

Traits Observed: BWT,200WT,400WT(x2),SC,Scan(EMA,Rib,Rump,IMF),Genomics

Sale Bulls

Lot 4	15							l	INTO	N T530	5 ^{SV}							INA22T5
ate of	Birth: 15	/10/202			Regist	er: APR			Matii	ng Type:	Natural							AMF,CAF,DDF
	SIRE:	NZE20	IYLEA G4 30502()N 16238	0312 LII	NTON 2	0312 ^{sv}					DAM:	NZE20	N 15248 [#]) 305117 N 12026 [;]	'653 LII	NTON 1	7653#		
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattl	e Evalua	tion											Selection Inc
anstasman Angur Cattle Evaluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PR0
EBVs	-0.8	-1.1	-3.8	+6.6	+54	+97	+130	+85	+24	+2.5	-4.2	+85	+4.3	-0.8	-0.2	+0.7	+2.5	\$152 A
Acc	62%	52%	81%	81%	82%	80%	80%	77%	72%	77%	42%	69%	68%	68%	69%	59%	73%	
Perc	75	86	60	93	36	37	28	76	9	36	60	10	74	65	47	35	42	49 mp.IMF).Genom
										IIdil	2 OD261 A	eu. Dw	1,200 1	,400 1	(XZ),SC,	SCALL(EIM	4,RID,RUI	ווף,וויור),טפווטוו
														÷				
ircnas	er													Ş				
Lot 4	16							L	INTO	N T144	1 ^{pv}							INA22T1
te of	Birth: 07	/09/202	2		Reaist	er: APR				ating Typ								AMF,CAF,DDC
			YLEA M	763 ^{pv}								RENN	/LEA EDM	1UND E1	1 ^{pv}			
	SIRE:	NORQ1	349 RE	NNYLE	a Q134	.9 ^{pv}					DAM:			5009 LI	INTON [•]	16009 ^s	V	
			YLEA N7									LINTO	N 14151#					
ACE		ril 2024		man Ang		1	tion						1			1		Selection Inc
rolasman Angur attle Bualuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO
EBVs	+9.6	+1.1	-2.0	+1.6	+43	+90	+107	+88	+20	+1.8	-5.8	+68	+9.8	-0.9	-1.5	+1.0	+5.7	\$199
Acc	65%	57%	82%	82%	83%	81%	81%	79%	74%	79%	46%	71%	71%	70%	71%	62%	75%	
Perc	2	71	84	9	83	58	76	72	26	62 Troit	23	48	15	67		20	2	9 9 9 9 9 9 9 9 9 9
										Ifdil	s observ	eu: BW	1,200 1	,400 W I	(XZ),SC,	SCGII(EM/	4,RID,RUI	mp,IMF),Genom
														÷				
irchas	er													Ş				
Lot 4	17							l		N T512	y sv							INA22T5
		/10/202	2		Reaist	er: APR		-		ng Type:								AMF,CAF,DDF
	5		- IYLEA G4	120 ^{sv}	Regist				T la ch	ig ijpei	naturai		N 13327#					
	SIRE:	NZE203	305018	3214 LII	NTON 1	8214#					DAM:		305116		NTON 1	6324#		(HD 50
		LINTO)N 1608	1#									N 14364					nd Ants
			TrancTac	man And	nus Cattle	e Fvalua	tion											Selection Inc
ACE	Mid Ap	rii 2024	110112102	man Ang		c Evalua	1	1		1			1	1		1		
	Mid Ap CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PR0
ACE Second							1	MCW +64	Milk +16	SS +1.6	DTC -8.3	CWT +55	EMA +8.4	Rib +2.8	P8 +3.6	RBY +0.4	IMF +3.4	

26 Traits Observed: BWT,200WT,400WT(x2),SC,Scan(EMA,Rib,IMF),Structure(Claw Set x 1, Foot Angle x 1),Genomics

70%

70%

6

70%

82

45%

2

Асс

Perc

64%

7

54%

14

82%

26

82%

15

83%

95

81%

94

81%

95

79%

94

74%

61

Lot 4	18							l	.INTO	N T37 [.]	1 ^{sv}							INA22	2 T 371
Date of E	Birth: 27	/09/202	2		Registe	er: APR			Matir	ng Type:	Natural							AMF,CAF	,DDF,NHF
	SIRE:	NZE203	YLEA G4 305019 N 13553	085 LI	NTON 1	9085 ^{sv}	1				DAM:	NZE20	N 13343# 1 305115 N 021#	637 LII	NTON 1	5637#		HD	50K Arr ANGUS
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selectio	on Index
Transfasman Angur Cartle Pulluation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+9.0	+3.8	-3.7	+1.8	+38	+73	+102	+69	+24	+3.4	-5.6	+52	+12.7	+0.4	+0.1	+1.6	+1.7	¢16E	
Acc	64%	54%	81%	81%	82%	80%	81%	78%	73%	78%	43%	70%	69%	69%	70%	60%	74%	\$165	
Perc	3	43	62	11	94	93	84	92	7	13	27	87	4	37	41	4	64	35	

78%

70

Traits Observed: BWT,200WT,400WT(x2),SC,Scan(EMA,Rib,Rump,IMF),Genomics

5

62%

54

74%

22

\$.....

71%

5

Purchaser.....

www.mountlinton.co.nz

.....

Lot 4	19							l	INTO	N T23 '	1 ^{sv}							INA22	2T231
Date of I	Birth: 10	/09/202	2		Regist	er: APR			Ma	ating Typ	e: Al							AMF,CAF	,DDC,NHF
	SIRE:	NORG4			-	5V					DAM:	NZE20	ons hen 305113 N 11090#	016 LII		3016#		HD	50K Kar ANGUS
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattl	e Evalua	tion											Selection	on Index
Transfasmen Anger Cartle Bualuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+7.0	+5.3	-3.3	+2.6	+42	+78	+94	+43	+21	+2.0	-4.1	+56	+13.1	+0.3	-0.4	+2.0	+2.3	¢100	A+
Acc	69%	60%	82%	82%	83%	81%	82%	79%	76%	79%	54%	73%	72%	72%	73%	66%	76%	\$183	
Perc	11	26	68	21	87	87	92	99	19	54	62	80	3	39	50	2	47	19	
										Trait	s Observ	ved: BW	r,200WT	,400WT	(x2),SC,S	Scan(EMA	,Rib,Rur	np,IMF),Ge	enomics

Purchaser.....

Purchaser..

.....Ş.....

Lot 5	0							l	.INTO	N T57	7 ^{sv}							INA22	2T577
Date of B	Birth: 22	/10/202	2		Registe	er: APR			Matir	ng Type:	Natural							AMF,CAF	,DDF,NHF
	SIRE:	NZE203	YLEA K1 305019 N 17010	9164 LII	NTON 1	9164 ^{pv}					DAM:	NZE2C	N 14122 [#]) 305117 N 15180 [#]	'336 LII	NTON 1	7336#		HD	SOK <i>Ixe ANGUS</i>
TACE	Mid Ap	ril 2024	TransTas	man Ang	gus Cattle	e Evaluat	tion											Selectio	on Index
Transfasman Angur Cartie Bualuation	CEDir	CEDtrs	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	Rib	P8	RBY	IMF	\$PRO	
EBVs	+5.7	+4.8	-5.4	+1.8	+26	+46	+61	+16	+13	+0.5	-4.9	+32	+13.2	+1.0	-0.2	+1.2	+5.0	¢16.4	A+
Acc	65%	56%	82%	82%	83%	81%	81%	79%	74%	78%	44%	71%	71%	71%	72%	63%	76%	\$164	
Perc	20	32	34	11	99	99	99	99	81	94	42	99	3	25	47	12	5	36	

Traits Observed: BWT,200WT,400WT(x2),SC,Scan(EMA,Rib,Rump,IMF),Genomics

<complex-block><complex-block><complex-block><complex-block>

COULD YOUR BULL FILL THIS SPACE?

Win a photoshoot and advertorial for 2025

We know your prize bull is worth putting front and centre, so enter the draw to win an interview, professional photoshoot and full-page advertorial just for your stud! Be an FMG client (or receive a valid FMG quote) and complete our short survey, and we'll put you in the draw!

Enter at fmg.co.nz/advertorial or scan the QR code*

For more information about FMG Premier Bull Sales Insurance talk to your FMG Rural Manager and check our Purchaser Instruction and Insurance Slip.

*Terms and conditions apply

We're here for the good of the country.

FMG Premier Bull Sale Insurance

What is FMG Premier Bull Insurance?

FMG provides automatic insurance for all bulls auctioned at an FMG Premier Bull Sale up to the value of \$50,000 for 14 days at no cost to the purchaser.

For any bull purchased over \$50,000 talk to an FMG representative.

What is the length of cover?

You will automatically be insured for the specified bull for 14 days. You also have the option to extend the length of insurance to 12 months. Simply tick the "Extend your Premier Bull Insurance" option on the Purchaser Slip. The specified bull is then insured for the remaining period of 12 months at **7.6%** of the purchase price. If you would like to discuss an alternative timeframe, please have a chat with your local FMG representative.

You don't have to pay today, FMG will invoice you for this additional cover.

What are the benefits?

√ Infertility	Cover if your specified bull has to be euthanised due to permanent infertility caused by certain accidents, disease, or illness.
\checkmark Theft or death	We cover your specified bull for theft or death caused by certain accidents, disease, or illness (including while in transit anywhere in New Zealand).
√ Vet costs	We cover up to \$500 for treatment of your specified bull to prevent death.

What will FMG pay?

FMG will pay the fair market value of your specified bull, less any amount you receive for the sale of the carcass, up to the amount shown on the insurance certificate.

03/24 INHD

Visit our website fmg.co.nz

Bull Purchc	aser Instr	Bull Purchaser Instruction and		FMG Insurance Slip	0	PMG
Please complete this slip and hand to the E for the 14 days free Premier Bull Insurance. ^ Required to correctly identify you once cover is issued	nd hand to the Booking r Bull Insurance. ronce cover is issued.	Please complete this slip and hand to the Booking Clerk before leaving the sale. This slip <u>MUST</u> be fully completed to be eligible for the 14 days free Premier Bull Insurance. ^ Required to correctly identify you once cover is issued.	ale. This slip MUST be ful	lly completed to be eligibl	Ð	Advice & Insurance
Purchaser/Agent full name:^			If purchasing on behalf of, wha	purchasing on behalf of, what is your relationship to owner?		Buyer No:
FMG Client Account Number:			Purchaser's full name:^			Purchaser's DOB:^/ / /
Purchaser's email:			Purchaser's phone:	Farm/busir	Farm/business name:	
Purchaser's postal address:				Post code:		NAIT No.:
Delivery address:				Stock firm	Stock firm to be charged:	
Lot: T	Tag:	43	Breed:	DOB:	Transport instructions:	
		-		_		
Period of FMG Insurance		Tick here to extend your Bull Insurance to 12 mon remaining period of 12 months.	iths @ 7.6% of the purchas	e price of your bull. <i>This will</i>	ths @ 7.6% of the purchase price of your bull. This will extend the cover beyond the initial 14 days free cover for the	tial 14 days free cover for the
If you do not wish to be contacted l	by FMG in the future to discuss	if you do not wish to be contacted by FMG in the future to discuss other products and services please ti	tick here:			
I acknowledge and agree for my pei agencies, transport operators and I	rsonal information contained ir FMG. The information is shared	n this Purchaser Instruction and Insu I for the purpose of completing the s	rance Slip to be shared between i ale and purchase of the bull, incl	the parties involved in this bull saluding insurance with FMG.	I acknowledge and agree for my personal information contained in this Purchaser Instruction and Insurance Slip to be shared between the parties involved in this bull sale, including but not limited to the vendor or their representatives, livestock agencies, transport operators and FMG. The information is shared for the purpose of completing the sale and purchase of the bull, including insurance with FMG.	dor or their representatives, livestock
NO VERBAL INSTRUCTIONS WILL BE ACCEPTED Signature of Pu	Signature of Purchaser or Agent:		Date:			
Disclaimer Please note this is only a summary representative, by calling us or visi	of the product and is subject t iting, fmg.co.nz/livestockpolic;	to our specific product documentati y	on. For full details, you should re	sfer to the policy document. You ca	an get these documents, and any othe	Disclaimer Please note this is only a summary of the product and is subject to our specific product documentation. For full details, you should refer to the policy document. You can get these documents, and any other information you need, from your FMG representative, by calling us or visiting, fing.co.nz/livestockpolicy
						 Call us on 0800 366 466 fmg.conz

03/24 INHD

36

This sale will be hosted by bidr[®] (bidr.co.nz) as a HYBRID ON-FARM auction, with online bidding and a live-stream available for online purchasers.

All intending online purchasers must register with bidr[®] using an account held with one of the bidr[®] partner agencies in advance of the sale date.

The bidr[®] team is available to assist intending purchasers with signing up and registering - please call 0800 TO BIDR (0800 86 2437), or email enquiries@bidr.co.nz for assistance at any point.

Alternatively, contact your local bidr[®] representative:

Caitlin Barnett Sales and Operations Manager 027 405 6156

Aimee Flynn Lower North Island Territory Manager 027 282 1710

Bianca Perkins Upper South Island Territory Manager 027 732 0006 **Bruno Santos** Upper North Island Territory Manager 027 221 8276

Mckenzie Alfeld Upper South Island Territory Manager 027 341 8066

Sam Murphy Lower South Island Territory Manager 027 243 2736

Olivia Manley Sales Coordinator 027 348 6354

bidr.co.nz

MOUNT LINTON ROMNEY SUFTEX

2 YEAR GUARANTEE ON STRUCTURE

• High Meat Yielding •

Rams Selling from January

Add survival, growth & meat yield to your flock

Ask about our Fec Policy: Fec Management through breeding, not the drench gun

CONTACT: Olly Dickson 021 271 1106

office@mountlinton.co.nz • www.mountlinton.co.nz